Relativistic Spin Precession in the Double Pulsar

Rene P. Breton,1,2 Victoria M. Kaspi,1 Michael Kramer,2 Maura A. McLaughlin,3,4 Maxim Lyutikov,1 Scott M. Ransom,7 Ingrid H. Stairs,1 Robert D. Ferdman,1,6 Fernando Camilo,9 Andrea Possenti10

The double pulsar PSR J0737–3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B’s spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of \(4.77_{-0.65}^{+0.66}\) per year (68% confidence level) is consistent with that predicted by general relativity with an uncertainty of 13%.

Spin is a fundamental property of most astrophysical bodies, making the study of its gravitational interaction an important challenge (1). Spin interaction manifests itself in different forms. For instance, we expect the spin of a compact rotating body in a binary system with another compact companion to couple gravitationally with the orbital angular momentum (relativistic spin-orbit coupling) and also with the spin of this companion (relativistic spin-spin coupling) (2, 3). Observing such phenomena provides important tests for theories of gravity, because every successful theory must be able to describe the couplings and to predict their observational consequences. In a binary system consisting of compact objects such as neutron stars, one can generally consider the spin-orbit contribution acting on each body to dominate greatly the spin contribution. This interaction results in a precession of the bodies’ spin axis around the orbital angular momentum of the system, behavior we refer to as relativistic spin precession.

Although relativistic spin precession is well studied theoretically in general relativity (GR), the same is not true of alternative theories of gravity, and hence quantitative predictions of deviations from GR spin precession do not yet exist (4). For instance, it is expected that in alternative theories relativistic spin precession may depend on strong self-gravitational effects; that is, the actual precession may depend on the structure of a gravitating body (4). In the weak gravitational fields encountered in the solar system, these strong-field effects generally cannot be detected (5–7). Measurements in the strong-field regime near massive and compact bodies such as neutron stars and black holes are required. Relativistic spin precession has been observed in some binary pulsars (e.g., (8–10)), but it has usually only provided a qualitative confirmation of the effect. Recently, the binary pulsar PSR B1534+12 allowed the first quantitative measurement of this effect in a strong field, and although the spin precession rate was measured to low precision, it was consistent with the predictions of GR (11).

Here, we report a precision measurement of relativistic spin precession using eclipses observed in the double pulsar (12, 13). This measurement, combined with observational access to both pulsar orbits in this system, allows us to constrain quantitatively relativistic spin precession in the strong-field regime within a general class of gravitational theories that includes GR.

PSR J0737–3039A/B consists of two neutron stars, both visible as radio pulsars, in a relativistic 2.45-hour orbit (12, 13). High-precision timing of the pulsars, having spin periods of 23 ms and 2.8 s (hereafter called pulsars A and B, respectively), has already proven to be the most stringent test bed for GR in the strong-field regime (14) and enables four independent timing tests of gravity, more than any other binary system.

The orbital inclination of the double pulsar system is such that we observe the system almost perfectly edge-on. This coincidence causes pulsar A to be eclipsed by pulsar B at pulsar A’s superior conjunction (13). The frequency-dependent eclipse duration, about 30 s, corresponds to a region extending ~1.5 × 10\(^{-7}\) m (15). The light curve of pulsar A during its eclipse shows flux modulations that are spaced by half or integer numbers of pulsar B’s rotational period (16). This indicates that the material responsible for the eclipse corotates with pulsar B. The relative orbital motions of the two pulsars and the rotation of pulsar B thus allow a probe of different regions of pulsar B’s magnetosphere in a plane containing the line of sight and the orbital motion.

Synchrotron resonance with relativistic electrons is the most likely mechanism for efficient absorption of radio emission over a wide range of frequencies. In the model proposed by Lyutikov and Thompson (17), this absorbing plasma corotates with pulsar B and is confined within the closed field lines of a magnetic dipole truncated by the relativistic wind of pulsar A. The dipole magnetic moment vector makes an angle \(\alpha\) with respect to the spin axis of pulsar B, whose orientation in space can be described by two angles: the colatitude of the spin axis with respect to the total angular momentum of the system, \(\theta\), and the longitude of the spin axis, \(\phi\) (see Fig. 1 for an illustration of the system geometry). Additional parameters characterizing the plasma opacity, \(\mu\); the truncation radius of the magnetosphere, \(R_{\text{TR}}\); and the relative position of pulsar A with respect to the projected magnetosphere of pulsar B, \(z_B\), are also included in the model (17).

We monitored the double pulsar from December 2003 to November 2007 with the Green Bank Telescope in West Virginia; most of the data were acquired as part of the timing ob-

1Department of Physics, McGill University, Montreal, QC H3A 2TE, Canada.
2Jodrell Bank Observatory, University of Manchester, Manchester M13 9PL, U.K.
3Department of Physics, West Virginia University, Morgantown, WV 26506, USA.
4National Radio Astronomy Observatory, Green Bank, WV 24944, USA.
5Department of Physics, Purdue University, West Lafayette, IN 47907, USA.
6National Radio Astronomy Observatory, Charlottesville, VA 22903, USA.
7Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
8Laboratoire de Physique et Chimie de l’Environnement–CNRS, F-45071 Orleans cedex 2, France.
9Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA.
10Osservatorio Astronomico di Capodimonte, Istituto Nazionale di Astrofisica, Poggio dei Pini, 09012 Capoterra, Italy.

*To whom correspondence should be addressed. E-mail: breton@physics.mcgill.ca
serves reported in (14). The data used for our analysis were taken at 820 MHz with the SPIGOT instrument (18), which provides 1024 frequency channels across a 50-MHz bandwidth. Data for a total of 63 eclipses of pulsar A were collected over the 4-year period, with many obtained during semi-annual concentrated observing campaigns. We dedispersed each eclipse data set by adding time shifts to frequency channels in order to compensate for the frequency-dependent travel time of radio waves in the ionized interstellar medium, and we then folded them at the predicted spin period of pulsar A by using the pulsar analysis packages PRESTO (19) and SIGPROC (20) [see (14) for details about the radio timing]. Next, we extracted the relative pulse flux density of pulsar A by fitting each folded interval for the amplitude of a high signal-to-noise ratio pulse profile template made from the integrated pulse observed during the several-hour observation that includes each eclipse. Lastly, we normalized the flux densities so the average level outside the eclipse region corresponded to unity. We chose the time resolution of our eclipse light curves to equal, on average, four individual pulses of pulsar A (~91 ms).

In addition to the flux density, we determined the orbital phase and the spin phase of pulsar B corresponding to each data point of our time series. Orbital phases were derived from the ephemeris published in (14). Spin phases were empirically measured from data folded at the predicted period of pulsar B in a way similar to that described above for pulsar A. Over the 4-year monitoring campaign, we found notable changes in pulsar B’s pulse profile, likely due to the precession of its spin axis, which were also reported in (21). Around 2003, the average pulse profile was unimodal, resembling a Gaussian function. It evolved such that, by 2007, it displayed two narrow peaks. Using the pulse peak maximum as a fiducial reference point is certainly not appropriate. We find, however, that the unimodal profile gradually became wider and then started to form a gap near the center of its peak. Since then, the outer edges of the profile have not significantly changed, but the gap evolved such that two peaks are now visible. This lets us presume that the underlying average profile is reminiscent of a Gaussian-like profile to which some “absorption” feature has been superimposed near the center, leaving a narrow peak on each side. We therefore defined the fiducial reference point to lie at the center of the unimodal “envelope” that we reconstructed from the first 10 Fourier bins of the pulse profile, which contains 512 bins in total (see fig. S2 for an illustration of the pulse profile evolution).

We implemented the eclipse modeling of our data in two steps: the fitting of individual eclipse profiles and the search for evolution of the geometry of pulsar B. We first searched the full phase space to identify best-fit values of six parameters [see supporting online material (SOM) for more details]. Then, we reduced the number

Fig. 1. Schematic view of the double pulsar system showing the important parameters for the modeling of pulsar A’s eclipse (dimensions and angles are not to scale). Pulsar B is located at the origin of the cartesian coordinate system, whereas the projected orbital motion of pulsar A during its eclipse is parallel to the y axis at a constant z_0 as seen from Earth, which is located toward the positive x axis. Because the orbital inclination is almost perfectly edge-on (14), we can approximate the z axis to be coincident with the orbital angular momentum. The spin axis of pulsar B, whose spatial orientation is described by θ and ϕ, is represented by the Ω vector. The magnetic axis of pulsar B corresponds to the μ vector and makes an angle α with respect to Ω. Lastly, the absorbing region of the dipolar magnetosphere of pulsar B, truncated at radius R_{mag}, is shown as a shaded red region.

Fig. 2. Evolution of pulsar B’s geometry as a function of time. The marginalized posterior probability distribution of the magnetic inclination (α), the colatitude of the spin axis (θ), and the longitude of the spin axis (ϕ) of pulsar B are shown from top to bottom, respectively. For each data point, the circle represents the median value of the posterior probability density, whereas the box and the bar indicate the 1σ and 3σ confidence intervals, respectively. The gray regions are the 1σ and 3σ confidence regions, respectively.
of free parameters to the subset (θ, φ, and α) describing the orientation of pulsar B’s spin and magnetic axes by fixing the other parameters to their best-fit values: μ = 2, R\text{maj} = 1.29° (projected value in terms of orbital phase), and ω_0/R\text{maj} = −0.543 (Fig. 1). Lastly, we performed a high-resolution mapping of the likelihood of this subspace in order to investigate subtle changes in the geometry. Lyutikov and Thompson (17) predicted that such changes, because of relativistic spin precession, could affect the eclipse light curve. In principle, relativistic spin precession of pulsar B’s spin axis around the total angular momentum should induce a secular change of the longitude of the spin axis, φ, whereas the magnetic inclination, α, and the colatitude of the spin axis, θ, are expected to remain fixed over time. Indeed, from model fitting, we find no significant time evolution of α and θ, whereas φ does change. Because of correlation between the parameters, we jointly evaluated the best-fit geometry of pulsar B by using a time-dependent model in which α = α_0 and θ = θ_0 are constants and φ varies linearly with time; i.e., φ = φ_0 + ω_0 t, where ω_0 is the rate of change of pulsar B’s spin axis longitude and the epoch of φ = φ_0 is 2 May 2006 [Mean Julian Day (MJD) 53857]. Figure 2 shows the time evolution of the parameters and the fit derived from this joint time-dependent model (Table 1). The precession rate ω_0 of 4.77° ± 0.66° year⁻¹ (22) agrees with the precession rate predicted by GR (23), 5.0734° ± 0.0007° year⁻¹ (24), within an uncertainty of 13% (68% confidence level).

This relatively simple model (17) is able to reproduce the complex phenomenology of the eclipses (Fig. 3 and movie S1) except at the eclipse boundaries, where slight magnetospheric distortions or variations in plasma density are likely to occur. Fits including the egress generally are poor in the central region where we observe narrow modulation features, which are critical for determining pulsar B’s geometry. For this reason, we excluded the egress from the fits, using orbital phases between −1.0° and 0.75° (Fig. 3). We accounted for systematics introduced by the choice of the region to fit in the priors of our Bayesian model (SOM). This improved the fit of the model throughout the center region of the eclipse while still producing qualitatively good predictions near the eclipse egress. The overall success of the model implies that the geometry of pulsar B’s magnetosphere is accurately described as predominantly dipolar, a pure quadrupole, for instance, does not reproduce the observed light curves. Although the model does not exclude the possibility that higher-order multipole components may exist close to the surface of pulsar B, our modeling supports the conclusions (17) that these eclipses yield direct empirical evidence supporting the longstanding assumption that pulsars have mainly dipolar magnetic fields far from their surface.

The direct outcome from modeling the eclipse profile evolution is a measurement of the effect of relativistic spin precession (see movie S2 for an illustration of the time evolution of the eclipse). We can use the inferred precession rate to test GR (Fig. 4) and to further constrain alternative theories of gravity and the strong-field aspects of relativistic spin precession. We use the generic class of relativistic theories that are fully conservative (Lorentz-invariant) and based on a Lagrangian, as introduced by Damour and Taylor (4). In this way, we can study the constraints of our observations on theories of gravity by describing the spin-orbit interaction within a specific theory that couples functions appearing in the corresponding part of the Lagrangian. In this framework, we can write the precession rate of pulsar B in a general form, ω_B = ω_f L^2 \alpha_q (1 − ε^2)^{3/2}, where L is the orbital angular momentum of the system, \alpha_q is the semimajor axis of the relative orbit between the pulsars, ε the eccentricity of the orbit, and \alpha_q is a generic strong-field spin-orbit coupling constant. Because L and \alpha_q are not directly measurable, it is more convenient to write the above expression with use of observable Keplerian and post-Keplerian parameters. Although alternative forms generally involve a mixture of gravitational theory–dependent terms, the particular choice \omega_f = \omega_k^{\text{min}} \times \epsilon^{-2} \times \epsilon^{-2} \epsilon^{3/2} is the only one that does not incorporate further theoretical terms other than the spin-orbit coupling constant, \epsilon; the speed of light, c; and a generalized gravitational constant for the interaction between the two pulsars, G. In this expression, the Keplerian parameters ε and n = 2πP_s, the angular orbital frequency, are easily measurable for any binary system. On the other hand, the post-Keplerian Shapiro delay shape parameter, \sigma, equivalent to the sine of the orbital inclination angle (4), requires relatively edge-on orbits to be observed. Measurement of the projected semi-major axes of the two orbits (25), x_A and x_B, found in the above equation necessitates that each body must be able to be timed. Therefore, the double pulsar is the only relativistic binary system that allows a direct constraint on the spin-orbit coupling in general theories of gravity. By using the inferred preces-
The mass ratio ($r = x_2/x_1$) and five post-Keplerian parameters (s and r, Shapiro delay shape and range; ω, periastron advance; Ω_b, orbital period decay due to the emission of gravitational waves; and γ, gravitational redshift and time dilation) were reported in (24). Shaded orange regions are unphysical solutions because $\sin i \leq 1$, where i is the orbital inclination. In addition to allowing a test of the strong-field parameter ($\frac{\Delta \rho}{\rho}$), the spin precession rate of pulsar B, Ω_B, yields a new constraint on the mass of the Sun. M_s is the mass of the Sun.

The spin precession rate of pulsar B, Ω_B, is given by:

$$\Omega_B = 4.77 \times 10^{-6} \text{ year}^{-1}$$

$$\frac{\Delta \rho}{\rho} = 3.38 \times 10^{-6} \text{ year}^{-1}$$

Every successful theory of gravity should predict this value: These observations provide a strong-field test of gravity that complements and goes beyond the weak-field tests of relativistic spin precession (26). In GR, we expect to measure

$$\frac{\Delta \rho}{\rho} = 2.5 \times 10^{-6}$$

$$\Omega_B = 3.60 \times 10^{-4} \text{ year}^{-1}$$

where we have used the masses determined from the precisely observed orbital precession and the Shapiro delay shape parameter under the assumption that GR is correct (14). Comparing the observed value with GR's predictions, we find

$$\frac{\Delta \rho}{\rho} = 0.94 \pm 0.13.$$