Circumstellar disks and the dawn of planetary systems

Leonardo Testi (European Southern Observatory)

- Structure of Circumstellar Disks
- The role of disks in the formation of stars
- Evolution & Fist Steps towards Planet Formation

From Cores to Stars and Planetary Systems

SED and Infrared Excess

- ◆ Cirsumstellar disks in the PMS phase are optically thick (except at λ≥mm)
- Disks dominate the emission beyond 1-2µm
- The shape of the SED depends on the disk structure

Disks at different wavelengths

Physical sizes

- Few hundred AUs
 - From scattered light
 - > Mm continuum
 - ≻ CO mm lines

Masses: (sub)mm continuum emission

Radial density profiles

 High resolution mm continuum observations allow to derive the dust column density as a function of radius

"Flared" disks

Which observations probe what?

Molecular gas

◆ Gas has to dominate the disk mass

From geometry : H/R ~ 0.1 at 1 AU

$$\frac{1}{\rho} \frac{\partial p}{\partial z} \sim \frac{p}{\rho z} = -\frac{GM_{\star}z}{R^3}$$
$$\rho(z) = \rho(0) \ exp(-z^2/2H^2)$$

$$H/R = (T_d/T_g)^{1/2} (R/R_{\star})^{1/2}$$

Direct measurements:

$$T_g = \frac{GM_\star\mu}{kR_\star}$$

➢Cold gas CO, … (outer disk)

>Warm gas H_2 , CO, $H_2O(?)$ (inner disk)

Indirect: Accretion and Jets

Molecular gas

θ

 Calculation of the CO emission assuming thermalised gas

$$I_{\nu} = \int_{0}^{\infty} S_{\nu}(s) e^{-\tau_{\nu}}(s) K_{\nu}(s) ds$$

$$\tau_{\nu}(s) = \int_{0}^{s} K_{\nu}(s') ds' \qquad K_{\nu}^{d}(s) = \rho(s) \cdot k_{\nu} \qquad K_{\nu}^{CO}(s) = n_{l}(s) \cdot \sigma_{\nu}(s)$$

$$n_{l}(s) = \chi_{CO} \frac{\rho(s)}{m_{0}} \cdot \frac{g_{l} e^{-E_{l}/kT_{CO}(s)}}{Z(T_{CO}(s))}$$

$$S_{\nu}(s) = B_{\nu}(T_{CO}(s)) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp(h\nu/kT_{CO}(s)) - 1}$$

$$T_{CO}(r) = T_{CO}(r_{0})(r/r_{0})^{-q} \qquad \text{(Isella et al. 2007)}$$

Molecular gas

Simulated CO profiles and maps

(Isella et al. 2007)

Gas properties and evolution

- Kinematics
 - Disk-outflow interaction
 - Possible evidence for non keplerian motions
- Physical properties
 - Temperature, density structure
 - Abundance, gas to dust ratio
- Chemical properties
 - Formation of complex molecules
 - Chemical differentiation in different regions of the disk

Gas properties and evolution

- Kinematics
 - Disk-outflow interaction
 - Possible evidence for non keplerian motions
- Physical properties
 - Temperature, density structure
 - Abundance, gas to dust ratio
- Chemical properties
 - Formation of complex molecules
 - Chemical differentiation in different regions of the disk

CO isotopes depletion factors: ${}^{13}CO \Rightarrow \sim 10$ ([${}^{13}CO$]/[H₂]~10⁻⁷) C ${}^{18}O \Rightarrow > 60$

Disks and the formation of stars

- Disks are formed in the early stages of core collapse and are an essential ingredient of the standard paradigm for star formation
- Disk-star interaction during pre-main sequence evolution
 - Disk accretion
 - Outflows and winds
- Is this paradigm applicable to the least and most massive stellar objects?
 - Formation of Brown Dwarfs
 - Formation of Massive Stars

Origin of Brown Dwarfs

- Dynamical interaction in small (proto-)stellar systems result in the ejection of stellar embrios
 - No or very short-lived disk
 - Single or low-mass binaries
- Standard core collapse and disk accretion scenario
 - > High fraction of long lived active disks
 - Similar properties a more massive TTs systems
- Formation in protoplanetary disks and subsequent dynamical ejection
 - No disks
 - > No multiples

Disks in Brown Dwarfs

♦ GY11 in ρ-Oph

Numerical simulations

- Collapse of a turbulent cloud core (simplified)
- Resolution ~20AU
- Formation of a small cluster

(Bate et al. 2004)

Disk masses

Disks and High-Mass Protostars

- There is evidence that also high-mass protostars are surrounded by massive (accretion?) disks
- + Examples:
 - > G192 (Shepherd et al. 2001)
 - IRAS 20126+4104 (Cesaroni et al. 1997/1999/2005)
 - > G24/G31 (Beltran et al. 2004/2005)

G192: 7mm cont 40 mas resol VLA+PT

Disks around massive stars

Disk Evolution

There is evidence that disk evolution and planet formation ✦ systems may occur on timescales of a few million years

Inner disk clearing

- Evolution of the fraction of infrared excess sources in clusters
- In 1-2Myr 50% of the sources have lost teir inner disk
- Debris disks begin to appear at 5-10Myr

Why do disks dissipate?

Log Time (yrs) 2 &

6

-1

- Local effects:
 - viscous evolution
 - photoevaporation by the central star
 - wind stripping
 - tidal interactions (binaries, planets)
- Environmental effects:
 - > stellar encounters in clusters
 - photoevaporation by other stars

Grain Settling and Growth

- Grains are pushed to the midplane by the vertical component of the stellar gravity
- Big grains "fall" down more rapidly
 - Grains grow by inelastic collisions with smaller grains

- The process is very fast and rapidly produces a vertical stratification of grain properties
- Turbulence, mixing and destructive collisions have to slow down this process
 - ➤ Need to maintain the "flaring" (SED)
 - > Big grains are present also in the disk atmosphere

Processing of the 10 micron feature

Grain Growth and Crystallization

- Full range of profiles in disks around HAeBe, TTS and young BDs
- Grain sizes: from ISM to a few μm (not sensitive to larger grains)
- Mineralogy: from Amorphous to Crystalline

Bouwman et al. 2005; Apai et al 2005)

Spatially resolved spect (MIDI)

Diamonds in the HD97048 Disk

- VLT/NACO 0.08 arcsec 3.3μm spectroscopy
- Resolve the spatial location of different dust components

Circumstellar disks @ mm- λ

- At long wavelegths the thermal emission from dust grains in circumstellar disks becomes optically thin
- mm observations are a powerful (in most cases the only) probe of the dust population on the disk midplane
- The observed millimeter spectral energy distribution depends "only" on the number, temperature and emissivity of dust grains
 - Assuming a grain mixture at a defined temperature, the measured flux at a given wavelength is proportional to the total dust mass
 - Measuring the continuum emission from dust grains at several wavelengths we can set constraints also on the combination of the dust properties ad the disk structure
 - With the aid of appropriate disks models and of spatially resolved images of disks it is possible to constrain the geometry and physical properties of the dusty disks

(sub)mm continuum emission

Evolution of dust in disks

- ✦ Search for the presence of large (cm-size) grains
- The basic idea is to search for mm spectra that approach the black body spectrum
 - > limit for optically thick disk or grey dust (size>> λ)
- $[F_v \sim v^{\alpha}; \alpha = 2 + \beta; \kappa_v \sim v^{\beta}]$

Evolution of dust in disks

- Search for the presence of large (cm-size) grains
- The basic idea is to search for mm spectra that approach the black body spectrum
 - > limit for optically thick disk or grey dust (size>> λ).
- $[F_v \sim v^{\alpha}; \alpha = 2 + \beta; \kappa_v \sim v^{\beta}]$

Evolved dust in HAe disks

✤ 1 to 7 mm observations with OVRO/PdBI and the VLA

+ 世 〇 十

Evolved dust in HAe disks

✤ 1 to 7 mm observations with OVRO/PdBI and the VLA

β, grain sizes, k and disk masses

- Grain size distributions with very large upper cutoff explain the observed low values of β
- Opacity and mass is dominated by the upper end of the distribution
- ◆ Using the appropriate dust opacity coefficients: M_{dust}~10^{-2/-3}M_{sun} => original disk mass 0.1-1 M_{sun}
- Size distribution need to be cut at "observed" size

Data:

HAe (Testi et al. 2001; 2003; Natta et al. 2004) TW Hya (Wilner et al. 2000;Calvet et al. 2002) TTauri stars (Rodmann et al. 2005)

(Natta & LT 2004; Natta, LT, et al. PPV) Leonardo Testi: *Protoplanetary Disks*, SNA Maracalagonis (CA) 25 May 2007

Large grains in HAe and TTS systems

- Values of β range from 1.8 to 0.1 (from ISM grains to pebbles)
- No obvious correlation with stellar properties
- No obvious correlation with age
- No obvious correlation with disk surface grains
- **+** ???
- <u>Caveat</u>: "large disks" small, biased samples

Data:

HAe (Testi et al. 2001; 2003; Natta et al. 2004) TW Hya (Wilner et al. 2000;Calvet et al. 2002) TTauri stars (Rodmann et al. 2005)

Pebbles should not survive in disks!

(Isella et al 2006) Leonardo Testi: Protoplanetary Disks, SNA Maracalagonis (CA) 25 May 2007

Resolving the disk properties

Spiral structure in AB Aur

 Detection at mm wavelengths confirm that the spiral structure seen in scattered light correspond to a density contrast in the disk

State of the Art & Future Directions

- Grains grow and settle in disks around all type of PMS objects
- Grain evolution can be very fast as we see highly processed grains around objects of all ages between 1 and 10 Myr
- It is difficult to derive a consistent picture of grain evolution because different observations probe different regions of the disks and samples are still small

State of the Art & Future Directions

- Grains grow and settle in disks around all type of PMS objects +
- Grain evolution can be very fast as we see highly processed grains around objects of all ages between 1 and 10 Myr
- It is difficult to derive a consistent picture of grain evolution because different + observations probe different regions of the disks and samples are still small
- Most of the dust mass is contained in "pebbles" +
 - Large bodies, if present, do not dominate the solid mass of the disk up to 5-10 Myr
- Growth to pebbles is very fast, but converting a significant mass to 1m-size + planetesimals seems more difficult (or requires more time)

Leonardo Testi: Protoplanetary Disks, SNA Maracalagonis (CA) 25 May 2007

Diameter, cm

State of the Art & Future Directions

- + Grains grow and settle in disks around all type of PMS objects
- Grain evolution can be very fast as we see highly processed grains around objects of all ages between 1 and 10 Myr
- It is difficult to derive a consistent picture of grain evolution because different observations probe different regions of the disks and samples are still small
- Most of the dust mass is contained in "pebbles"
 - > Large bodies, if present, do not dominate the solid mass of the disk up to 5-10 Myr
- Growth to pebbles is very fast, but converting a significant mass to 1m-size planetesimals seems more difficult (or requires more time)
 - > Or perhaps we are just observing the odd beasts?
- Timescale for settling and growth: is dust evolution occurring in Class I phase?
 - Early planet formation?
- Large grains should be dragged to the central star on very short timescales, why do we see them at all?
 - Resolve the radial dependence of Grain Growth in disks

Simulations of giant protoplanets in circumstellar disks

- Simulations of giant protoplanets in circumstellar disks
- ✤ ALMA 650GHz Y1 8h

- Simulations of giant protoplanets in circumstellar disks
- ✤ ALMA 650GHz Y1 8h
- NB. 50pc distance! (though experiment even with ALMA)

- + Simulations of giant protoplanets in circumstellar disks
- + ALMA 650GHz Y1 8h
- NB. 50pc distance! (though experiment even with ALMA)

Debris disks

 Simulations of the observations of a disk similar to that around Vega as observed with PdB and with ALMA

Leonardo Testi: Protoplanetary Disks, SNA Maracalagonis (CA) 25 May 2007

ALMA & Circumstellar Disks

- Disks and the formation of stars
 - Disk structure, chemistry
 - > Disk-jet interaction: removal of angular momentum and accretion
 - Formation of Brown Dwarfs and massive stars
- Disk evolution and planet formation
 - Chemical evolution, prebiotic molecules
 - Evolution of dust and formation of planetesimals
 - Giant protoplanets and gaps in disks
- Debris disks
 - Secondary dust properties
 - Dust-planets interactions

