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Local galaxies
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e T 1 Dust thermal emission
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Dust thermal emission

It's an excellent tracer of
star formation,
not affected by extinction

optical

ation invisible
In the optical

However current mm-submm facilities have poor angular
resolution and poor sensitivity



Dust thermal emission

ALMA will allow us to trace star formation in galaxies
with an unprecedented sensitivity and angular resolution
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The origin of dust

Standard scenario: atmospheres ~ Blue Compact Dwaris

of evolved stars (AGB) - Very young sys
(age ~107 yrs
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Origin of dust

Dust from SNe -> short time scales = | Expected SED
(dust yield hotly debated) ™| | from SN dust
Different dust composition 1 .| /.
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‘ALMA beam

Origin of dust X

ALMA ~ at least 100 times
more sensitive =

will provide accurate dust
masses and emissivities,
and also locate dust
production sites

=> pin-down dust formation
mechanism and efficiency
In the early stages
of galaxy formation
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(the submm region is the most
sensitive to the dust mass and
emissivity determination)



. Molecular gas
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Cold H, cannot be detected directly,
because it has no dipole moment

| CO second most abundant molecule,

excited by collision with H2
(brightest mol. lines)

Widely used as H, tracer

Lco = a M(H,)

!

(conversion factor depends on

metallicity and temperature/density)

Tracers of high density gas: HCN, HCO+, ...

critical densities ~109-107 cm-3 (while n_(CQO)~4x10% cm-3

Forest of molecular transitions

in high S/N spectra (~80 lines/1GHz)-:

tracing different properties of the gas

2 Neu”

37 Indsntified Featu res
o 35Unidsntified Features
A ~6 linegs per 100 km/s "
5 Thys = 0003 K (theoretical)

1.4 —

1.2

1.0+

___——GHOH + [GHOH),
5

231000 231200 231400 231600 232000

Frequency (MHz)

231800



Molecular gas distribution in galaxies

A variety of morphologies

Spiral Barred




Molecular gas dynamics

disk rotation (=M, streaming motions in bars

observation model
1 L B B | T

the bar potential drives
gas into the center




Astrochemestry -> diagnostic tool
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ALMA will:

- Resolve these structures and kinematics
in high-z galaxies

- The same detailed information currently
obtained on nearby galaxies will be_obtained
in galaxies at ~100-500 Mpc (-> @

powerful starbursts, QSOs,...)

- In nearby galaxies ALMA will resolve individual
molecular clouds (~1pc) -> mass function

nnnnnnn

- Trace at the same time star formation through
continuum emission -> map the star formation
efficiency (SFE)

-Trace molecular gas around AGN & e -
black holes (unified model, BH fegding and masses) [ / M\ :




The feeding of Active Galactic Nuclei is still a puzzle

specially from the ~100pc to the ~1 pc scale

) NGC 1068 2CO(2-1)
= LICNLS0) molecular “hole”
040" Inside the
100pc ring
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But we know that inside the central parsec
there is a strong concentration of gas/dust

powerful nuclear
(pc-scale)

warm dust
emission

nuclear (pc-scale)
H,O maser disc

10mas = 0.7pc




Why the nuclear How does the molecular gas
component is not  manage to flow from the 100pc
detected in CO? ring/torus to the inner pc?

Beam dilution?
Hot and dense gas?
Totally dissociated?



ALMA will allow us to tackle these issues

e.g. NGC1068
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Related issue: the obscuring torus in the unified model of AGNs

»NLR

Gas clouds - —

D Thin accretion
ense disk

torus e 2

S & e type 2
/ / » "\\Black hole

Several (competing) models:

Geometry Dynamics Structure
large small rotation rotation cont./diff. clumpy
~100 pc ~1 pc and outflow medium medium

(observed) (ALMA) (ALMA) (ALMA)




Clumpy torus (model) 70 pc
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resolution
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Measuring Black Hole masses in galactic nuclei
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A “picture” of the Galactic Center Black Hole taken with
ALMA + mm VLBI
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Merging of galaxies

Main triggering / Crucial phase of

mechanism of strong galaxy evolution
starburst galaxies (“hierarchical”

(all galaxies with formation of gals.)

SFR>100 Msun/yr

are merging strongly

interacting) Triggering mechanism
of AGN

(most merging systems
host an AGN)




Galaxy merger simulations: behaviour of gas

- Extended, diffuse tidial tails,
but most of the gas collapses
towards the nuclei
(see also Barnes & Hernquist 1996)

- Strongly enhanced star formation
-> starburst winds

- Black-Hole accretion -> AGN
- QSO winds eject most of the

gas in the galaxy -> stops star formation
(see also Granato et al. 2004)

- An elliptical galaxy is formed

- The QSO feedback manages to keep Mg, « M
(see movie) (for experts: it also accounts for downsizing)

gal



Preliminary tests with current facilities

Arp220: the closest (D=75Mpc)
strongly merging system
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gas accumulated onto
the two nuclei in thick
rotating disks

(in agreement with
simulations)




NGC6240: strongly, advanced merging system

Huge amount of molecular gas, most of it in the region
between the two nuclei (probably the center of mass) NOT on the nuclei

Scoville+99

Tacconi et al.

Komossa+05

It hosts two QSOs (as expected by

simulation in the advanced merging phase)

but both of them are heavily obscured (N,>1024 cm-?)
-> QSO wind/feedback seems little effective here



Additional issue

Many (unobscured) QSOs show
large quantities of molecular gas
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Models expect little redisual
gas during the QSO phase
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Mkn231, the closest ~QSO

CO(2-1) map

regular rotation...

models expect strongly
distorted, post-merging
morphology and
velocity field

(but poor resolution)




ALMA will allow us to tackle these issues:

by providing detailed molecular gas
maps in merging / interacting systems

- Do the merging nuclei have dense
concentrations of molecular gas?

- Measure multiple transitions-species: ALMA beam

is the conversion factor CO-> H, much higher than “stand

- Is the gas in the center of star forming stars? ( avoiding the
feedback from the QSOs). Or low SFE

HST / IRAM-PdBI CO(2-1)
images of a powerful QSO

ALMA beam
4

by obtaining detailed information

of molecular gas properties in
powerful of QSOs

- Kinematical evidence for recent merger?
- Large population of gas-poor QSOs?




