Molecular clouds and star formation

Jan Brand
INAF - Istituto di Radioastronomia
Bologna

Overview of these lectures:

The galactic interstellar medium (ISM): constituents and their co-existence; large-scale distribution

Molecular clouds properties; chemistry; mass and temperature

Kinematics
rotation curve, kinematic distances
Star formation
young stellar objects (YSOs); IMF manifestations (interaction with surroundings)

Star formation: high-mass
IMF: a universal function?

THE PHASES OF THE INTERSTELLAR MEDIUM

Not just stars...

ISM: $90 \% \mathrm{H}, 9 \% \mathrm{He}, 1 \%$ "rest"

Dust mixed with gas

Abundances: for every $10^{6} \mathrm{H}$ atoms, there are 250 C , $500 \mathrm{O}, 80 \mathrm{~N}$ atoms \sim solar (\equiv cosmic). Other elements: IS abundance <<cosmic: depletion (material locked up in dust grains)

Characterize ISM acc. to condition of H :
HI: $\mathrm{M} \sim 2 \times 10^{9} \mathrm{M}_{\odot}$
$\mathrm{H}_{2}: \mathrm{M} \sim \mathrm{M}(\mathrm{HI})$
HII: $\mathrm{M} \sim 1 \times 10^{8} \mathrm{M}_{\odot}$
$\mathrm{M}(\mathrm{ISM}) \sim 4 \% \mathrm{M}$ (visible matter in Galaxy)
M (dust) $\sim 1-2 \% \mathrm{M}($ ISM $)$
Energy in the ISM:
Radiation field, magnetic fields, cosmic rays

High density? Not really... (only in some locations):

High-density molecular cloud core: $\geq 10^{6}$ particles cm^{-3}
Earth's atmosphere at sea level: $\sim 3 \times 10^{19}$ particles cm^{-3}
Best terrestrial vacuum: $3 \times 10^{12-13}$ particles $\mathrm{cm}^{-3}!$!

Average density ISM: ~ 1 particle cm^{-3}

What you see depends on frequency Orion: optical, IR, and mm

CO

HH46 - Visual \rightarrow NIR \rightarrow MIR

The Spitzer-view

Inner, outer, \& (far-) outer Galaxy

Solar circle: $R=R_{0}=8.5 \mathrm{kpc}$

Inner Galaxy: $R<R_{0}$

Outer Galaxy: $R>R_{0}$

Far-Outer Galaxy: $R>15$ kpc

Distribution ISM

Galactic ring $4<\mathrm{R}<6 \mathrm{kpc}$

Distributions peak at $\mathrm{R}<\mathrm{R}_{0}=8.5 \mathrm{kpc}$ Max. extent $\sim 2 R_{0}$

HII

Radiation mechanism of HI

Galactic distribution HI

Hartmann \& Burton 1994

$\mathrm{CO}, \operatorname{not} \mathrm{H}_{\mathbf{2}}$

ISM composed essentially of hydrogen:
HI: 21-cm line
H_{2} : symmetric molecule \Rightarrow no radio emission

- UV absorption lines
- IR emission lines

CO : most abundant after $\mathrm{H}_{2}:\left[\mathrm{H}_{2}\right] /[\mathrm{CO}] \sim 1 \times 10^{-4}$.

- excited by collisions with H_{2}
- easily observed rotational transitions at (sub-)mm wavelengths
- $\mathrm{n}\left(\mathrm{H}_{2}\right) \geq$ a few $\times 10^{\mathbf{3}} \mathrm{cm}^{-3}$

Galactic distribution $\mathbf{C O}$

Galactic latitude
$\xrightarrow{\perp}$ Galactic longitude

Dame, Hartmann \& Thaddeus 2001

HI: tilted disk

Fig 6

Nakanishi \& Sofue 2003 PASJ

HI: warped \& flared disk

Fig 7

Same seen in $\mathrm{H}_{2} / \mathrm{CO}$

Fig. 8a. Distribution with galactocentric azimuth of the z heights of molecular clouds with kinematic distances in the range $R=8.5$ to 10.0 kpc

Fig. 8e. Shape of the molecular cloud layer at $16<R<20 \mathrm{kpc}$

Fig. 8b. Shape of the molecular cloud layer at $10<R<12 \mathrm{kpc}$

Fig. 8 d . Shape of the molecular cloud layer at $14<R<16 \mathrm{kpc}$

Wouterloot, Brand, Burton, \& Kwee 1990, A\&A 120, 21

Surface density

Scale height

In OG: Surface density down, scale height $u p \Rightarrow$ volume density even lower

Wouterloot, Brand, Burton, \& Kwee 1990

A thick disk in CO

(Dame \& Thaddeus 1994)

CO (29.5-30.5 degs)

n(\mathbf{H}_{2}) vs. z-height

Is there a spiral arm pattern?

Distribution of Hit regions (young stars)

Same, but with spiral pattern
drawn in

Georgelin 1975

Spiral structure

From H α (Russeil, A\&A 2003)

From CO(1-0)
(Nakanishi \& Sofue 2006 PASJ)

From HI (Nakanishi \& Sofue 2003 PASJ)

NEW Outer arm in HI

McClure-Griffiths et al. 2004

Fig. 1.-(a) Differential $H_{\text {I }}$ density (spiral perturbation minus the underlving Toomre disk) for the simple four-arm Milky Way spiral model described in 84 .

The multi-phase ISM

		$T(K)$	$n_{H}\left(\mathrm{~cm}^{-3}\right)$	f_{V}	f_{M}	Probes
HII						
traditional		10^{4}	$0.1-10^{4}$	0.001	0.02	Ha, recomb. lines
coronal	HIM	$\geq 3 \times 10^{5}$	0.003	$0.6 ?$	$0.001)$	[OVI], X-rays
warm	WIM	8000	0.25	0.2	$0.1 ?$	$\mathrm{HI}, \mathrm{H} \alpha, \mathrm{H} 166 \alpha$
HI						
clouds	CNM	80	40	0.025	0.4	HI
warm	WNM	8000	0.4	$0.1-0.5 ?$		HI
H $_{2}$						
diffuse	Transl	$30-80$	$10^{2}-10^{3}$	≤ 0.01		HI,CO,100 μm
dense	Dark	$10-100$	$10^{3}-10^{6}$	0.005	0.5	mm molec.lines FIR dust

Models of the ISM (2-phase)

Early model: Field, Goldsmith \& Habing 1969

$\log (\mathrm{P} / \mathrm{k})=3.5 \mathrm{~cm}^{-3} \mathrm{~K}$

Figure 2.5 (a) Theoretical prediction for the equilibrium temperature of interstellar gas, displayed
as a function of the number density n. (b) Equilibrium pressure $n T$ as a function of number
density. The horizontal dashed line indicates the empirical $n T$-value for the interstellar medium.

Assume pressure equilibrium ($\mathrm{P} / \mathrm{k} \propto \mathrm{nT}=$ constant)
Stable points: A and C, corresponding to:
WNM ($\mathrm{n}=0.4, \mathrm{~T}=7000$) and $\mathrm{CNM}(\mathrm{n}=60, \mathrm{~T}=50)$

Explained most of the then-known observations.

Models of the ISM (3-phase)

Ostriker \& McKee 1977: 3-phase model
Gas distributed among 4(!) forms: HIM, WIM, WNM, CNM that are in P-equil. at $\mathrm{P} / \mathrm{k} \approx 3000 \mathrm{Kcm}^{-3}$.

SNe, OB-winds create system of hot tunnels in ISM
Recent assesment: Cox, 2005 Ann. Rev. A\&A 43

Models of the ISM (Cox upgrade)

CONCEPTIONS: Within the disk

Tepid intercloud gas
 - Local hotter regions

- Evaporating clouds

Adding superbubbles - But to which picture?

Flux ropes

- Filamentation
- Emptiness

CONCEPTIONS: Vertical

Thermal wind

- From escaping hot intercloud gas
Or, a hot halo

Galactic fountain 1

- From escaping ho intercloud gas which cools

Active halo

- Cosmic ray wind
- Micr oflares
- High z super novae

CONCEPTIONS: Global

Global thermal wind...
...or a hot halo?

Galactic fountain

Thick Quiescent Disk... ...with nuclear wind?

Active halo

Firure 10 Various conceptions of the larger scale structure of the Galactic atmosphere. In this figure, hacked green indicates warm HI: hatched green on yellow
backgound-diffue warm HII: orange-hoter gas tearing OVI; reed-material hot background-diftuse warm HII, orange-hoter gas bearing ovi, ree-matenal hot
enough to emit X rays: grap-plumes of escaping cosmic rays; and red dotsmicroflares. Problems with the top two panels are discussed in the text. The lower two panels contain some elements of potentially greater realism.

Molecular clouds - transition interface

Figure 3 A schematic diagram of a photodissociation region. The PDR is illuminated from the left and extends from the predominantly atomic surface region to the point where O_{2} is not appreciably photodissociated ($\simeq 10$ visual magnitude). Hence, the PDR includes gas whose hydrogen is mainly H_{2} and whose carbon is mostly CO. Large columns of warm $\mathrm{O}, \mathrm{C}, \mathrm{C}^{+}$, and CO and vibrationally excited H_{2} are produced in the PDR. The gas temperature $T_{\text {ga.s }}$ generally exceeds the dust temperature $T_{\text {or }}$ in the surface laver.

Molecular clouds are self-shielding against UV radiation.

Clouds are surrounded by envelope of HI.

Inside: molecules. Most abundant after H_{2} is $\mathrm{CO}\left(10^{-4}\right)$.

Molecular clouds: atomic envelope

Blitz, 1993 PPIII

Interstellar Molecules

137 molecules have been detected in space (205 including isotopomers, 50 in comets)

Astrochemistry. I.

- Formation of \mathbf{H}_{2} (Gould \& Salpeter 1963; Hollenbach \& Salpeter 1970; Pirronello et al. 1999; Katz et al. 1999; Cazaux \& Tielens 2002; Habart et al. 2003)

$$
R \sim 10^{-17} \mathrm{~cm}^{3} \mathrm{~s}^{-1}
$$

$$
\begin{aligned}
& \text { In gas phase: } \\
& \begin{array}{l}
\mathrm{H}^{-}+\mathrm{H} \Rightarrow \mathrm{H}_{2}+\mathrm{e} \quad \mathrm{R} \sim 10^{-21}-10^{-20} \mathrm{~cm}^{3} \mathrm{~s}^{-1} \\
\mathrm{H}+\mathrm{H} \Rightarrow \mathrm{H}_{2}+\mathrm{h} v \\
\mathrm{~V}
\end{array} \mathrm{R} \mathrm{\sim 10}^{-29}-10^{-31} \mathrm{~cm}^{3} \mathrm{~s}^{-1}
\end{aligned}
$$

In molecular clouds: ion-neutral reactions

$$
\begin{aligned}
& \mathrm{C}^{+}+\mathrm{H}_{2} \Rightarrow \mathrm{CH}_{2}^{+}+ \\
& \mathrm{CH}_{2}^{+}+\mathrm{e}^{-} \Rightarrow \mathrm{CH}+\mathrm{H} \\
& \mathrm{CH}+\mathrm{O} \Rightarrow \mathrm{CO}+\mathrm{H}
\end{aligned}
$$

Astrochemistry. II.

- Complex organic molecules are easily observed near young stellar objects (e.g. Charnley et al. 1992; Caselli et al. 1993)

Astrochemistry. III.

- To understand the distribution of the various molecular species to study the physical and kinematical properties of molecular clouds and of star formation.
- Example: CO, typically used to determine the mass of molecular clouds, disappears from the gas phase at densities $\mathrm{n}(\mathrm{H} 2)>10^{4} \mathrm{~cm}^{-3}$ and $\mathrm{T}<20 \mathrm{~K}$.

$$
\begin{array}{ll}
\text { CO disappears } & N_{2} \text { remains in the } \\
\text { from gas phase } & \text { gas phase: more } \\
\text { at } R<7000 A U & \text { volatile than CO? }
\end{array}
$$

L1517B: a low-mass pre-stellar core with depletion

On the other hand, N -bearing species well trace the density profile seen in the dust continuum emission

C-bearing species completely miss the central density peak

Tafalla et al. 2004

L1517B

Cores have order-of-magnitude radial CS and CO abundance gradients

Chemically rich outflows

> Shock tracers: $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{SiO}, \mathrm{H}_{2} \mathrm{O}$, S-bearing species, $\mathrm{H}_{2} \mathrm{CO} \ldots .$.

Bachiller \& Tafalla (2000): an empirical time sequence of lowmass outflows?

1st stage (Class 0): jet-like, HV bullets; 2nd stage (Class 0): no bullets, rich chemistry;

3rd stage (Class I): shell structure, evacuated cavity.

Bachiller et al. (2001)

Shock-enhanced abundances in outflows

SiO	$10^{-10}-10^{-6}$
$\mathrm{CH}_{3} \mathrm{OH}$	$10^{-7}-10^{-5}$
NH_{3}	$\sim 10^{-6}$
$\mathrm{H}_{2} \mathrm{CO}$	$\sim 10^{-7}$
HCN	$\sim 10^{-7}$
SO	$\sim 10^{-7}$

< 10^{-12}
~ 10^{-9}
$\sim 10^{-8}$
~10-8
~ 10-8
$\sim 5 \times 10^{-9}$
(with respect to H_{2})

PROPERTIES OF
 MOLECULAR CLOUDS

Typical properties GMCs

- Largest (100 pc) and most massive $\left(<10^{5} \mathrm{M}_{\odot}\right)$
objects in Galaxy
- Not uniform: volume f.f. $\ll 1$ surface f.f. ≈ 1
(≥ 1 clump along the l.o.s.)
$-\Delta \mathrm{V}_{\text {obs }} \gg \Delta \mathrm{V}_{\text {therm }} \approx\left(8 \ln 2 \mathrm{kT} / \mu \mathrm{m}_{\mathrm{H}}\right)^{0.5}$ line profile determined by velocity field of clumps: bulk motions.
- Gravitationally bound
$\mathrm{P}_{\mathrm{in}} / \mathrm{k} \sim 10^{5} \mathrm{Kcm}^{-3} \gg$
$<\mathrm{P}_{\text {ism }} / \mathrm{k}>\sim 10^{4} \mathrm{Kcm}^{-3}$
- All OB stars form in GMCs
- Strong confinement to spiral arms (contrast arm-interarm > 28:1)
$-\Delta \mathrm{V}($ cloud-cloud $) \approx 3-9 \mathrm{~km} / \mathrm{s}($ median 4.2$)$ $\neq \mathrm{f}(\mathrm{M}) \neq \mathrm{f}(\mathrm{R})$
-GMCs are young (< few $10^{7} \mathrm{yr}$)
- Material stays locked up in stars: replenishment needed (SFR ~2-4 $\mathrm{M}_{\odot} / \mathrm{yr}$, return $\sim 0.8 \mathrm{M}_{\odot} / \mathrm{yr}$

Orion A

${ }^{13} \mathrm{CO} 220 \mathrm{GHz}=1.3 \mathrm{~mm}$

Sheets and filaments
J. Bally (IAU227)

Molecular clouds: elongated

Brand \& Wouterloot 1994

Masses and mass-ratios

Brand \& Wouterloot 1995

Molecular clouds - virial- and pressure equilibrium

Molecular clouds \& star formation

Molecular clouds \& star formation

HST: NGC3603

Star formation sites in outer Galaxy

Projected distribution WB89-clouds Wouterloot \& Brand 1989 A\&AS 80, 149 (WB89)

Fig. Distribution of IRAS sources with colours of star-forming regions; shows there IS star formation out to the edge of the galactic molecular disk.

Embedded clusters I

Outflow in ${ }^{12} \mathrm{CO}(1-0)$ (SEST)

1.2 mm continuum (SEST/SIMBA)

JHK-composite Cloud: $\mathrm{M}=6.0 \times 10^{4} \mathrm{M}_{\odot}$ ~ 1'.7x1'. 7 $\mathrm{d}, \mathrm{R}=9.3,15.7 \mathrm{kpc}$

Embedded clusters II

Brand \& Wouterloot, A\&A 2007

Δ : dust core

White contour: half of the peak value

WB89-789. JCMT data.
$M_{\text {cloud }} \approx 5 \times 10^{3} M_{\odot}(C O)$;
$M_{\text {vir }}($ core $) \approx 400 M_{\odot}(C S)$;
$M_{\text {dust }} \approx 10 M_{\odot}$ (SED-fit;
$\mathrm{T}_{\text {dust }} \approx 22 \mathrm{~K}$).
$M_{\text {outflow }} \approx 12 M_{\odot}(C O)$;
SIMBA) $\quad \dagger_{d y n} \approx 4 \times 10^{4} \mathrm{yrs}$.

JCMT data. $\int T[C O(3-2)] \mathrm{dV}$

K-frame (ESO)
ESO-data
JHK-combined

A cloud without star formation

G216-2.5: "Maddalena's Cloud"

DERIVING FUNDAMENTAL PROPERTIES

Observing molecular clouds at large

Lowest allowed (J=2-0)

$\Delta \mathrm{E}=510 \mathrm{~K}$

H_{2} smallest diatomic molecule: widely-spaced energy levels Even lowest excited rot. levels too far above ground state to be easily populated at normal molecular cloud T . no dipole moment, hence quadrupole radiation (slow)

CO: more closely-spaced energy levels; easily populated also at low T

Two-level system

$$
\begin{aligned}
& \mathrm{g}_{1} \mathrm{~B}_{12}=\mathrm{g}_{2} \mathrm{~B}_{21} ; \mathrm{A}_{21}=\left(2 \mathrm{~h} v^{3} / \mathrm{c}^{2}\right) \mathrm{B}_{21} \\
& \mathrm{n}_{2} / \mathrm{n}_{1}=\left(\mathrm{g}_{2} / \mathrm{g}_{1}\right) \exp \left(-\Delta \mathrm{E} / \mathrm{k} T_{\mathrm{ex}}\right)
\end{aligned}
$$

Statistical equilibrium: in=out, regardless of process: $\mathrm{dn}_{1} / \mathrm{dt}=\left(\mathrm{A}_{21}+\mathrm{IB}_{21}+\mathrm{C}_{21}\right) \mathrm{n}_{2}-\left(\mathrm{IB}_{12}+\mathrm{C}_{12}\right) \mathrm{n}_{1}=0$ for each level

Example: CO. In molecular cloud, excitation $\mathrm{J}=1$ level through collisions with H_{2}.
If $\mathrm{n}_{\text {tot }}$ low, each upward transition followed by spontaneous emission of photon (rate $=n_{1} \mathrm{~A}_{10}$).
If $n_{\text {tot }}$ high, excited CO loses energy in collisions with H_{2}, without emission photon. Two regimes are separated at critical density $\mathrm{A}_{10} / \gamma_{10}=3 \times 10^{3} \mathrm{~cm}^{-3}$.

$$
\mathrm{n}_{1} / \mathrm{n}_{0}=\left(\mathrm{g}_{1} / \mathrm{g}_{0}\right) \exp \left(-\Delta \mathrm{E} / \mathrm{kT}_{\mathrm{ex}}\right)
$$

$$
\begin{aligned}
& \mathrm{n}_{\text {tot }} \ll \mathrm{n}_{\text {crit }}: \mathrm{n}_{1} / \mathrm{n}_{0} \text { small and } \propto \mathrm{n}_{\text {tot }}, \mathrm{T}_{\mathrm{ex}}<\mathrm{T}_{\text {kin }} \\
& \mathrm{n}_{\text {tot }} \gg \mathrm{n}_{\text {crit }}: \text { CO in LTE } \mathrm{T}_{\mathrm{ex}}=T_{\text {kin }}
\end{aligned}
$$

$\mathrm{NH}_{3}(1,1)$

$$
\mathrm{n}_{\text {crit }}=1.9 \times 10^{4} \mathrm{~cm}^{-3} .
$$

CS
$\mathrm{n}_{\text {crit }}=4.2 \times 10^{5} \mathrm{~cm}^{-3}$.
$\mathrm{H}_{2} \mathrm{O}$ (thermal emission) $\mathrm{n}_{\text {crit }}=1.7 \times 10^{7} \mathrm{~cm}^{-3}$.

Radiation transport I

$\mathrm{dI}_{v}=-\mathrm{k}_{\mathrm{v}} \mathrm{I}_{\mathrm{v}} \mathrm{ds}+\mathrm{j}_{\mathrm{v}} \mathrm{ds} \quad \mathrm{d} \tau_{\mathrm{v}} \equiv-\mathrm{k}_{\mathrm{v}} \mathrm{ds}$

$$
\begin{aligned}
& \mathrm{dI}_{v}=\mathrm{I}_{v} \mathrm{~d} \tau_{v}+\left(\mathrm{j}_{v} / \mathrm{k}_{v}\right) \mathrm{d} \tau_{v} \quad\left(\mathrm{j}_{v} / \mathrm{k}_{v}\right)=\text { source function } \mathrm{S}_{v} \\
& \mathrm{j}_{v}=(\mathrm{hv} / 4 \pi) \mathrm{n}_{\mathrm{u}} \mathrm{~A}_{\mathrm{ul}} \phi(v) \\
& \mathrm{k}_{\mathrm{v}}=(h v / 4 \pi)\left(\mathrm{n}_{1} \mathrm{~B}_{\mathrm{lu}}-\mathrm{n}_{\mathrm{u}} \mathrm{~B}_{\mathrm{ul}}\right) \phi(v)
\end{aligned}
$$

TE at temperature T: $\mathrm{S}_{\mathrm{v}}=\mathrm{B}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{ex}}\right)$: Planck function. Then:

$$
I_{v}=I_{v}(0) e^{-\tau_{v}}+B_{v}\left(T_{e x}\right)\left(1-e^{-\tau_{v}}\right)
$$

Radiation transport II

So we have: $I_{v}=I_{v}(0) e^{-\tau_{v}}+B_{v}\left(T_{e x}\right)\left(1-e^{-\tau_{v}}\right)$
Define $T_{A}(v) \equiv \mathrm{I}_{\mathrm{v}} /\left[2 \mathrm{k} v^{2} \mathrm{c}^{-2}\right], \mathrm{T}_{\mathrm{A}}(0)=\mathrm{T}_{\mathrm{bg}}$, and define $\mathrm{J}_{\mathrm{v}}(\mathrm{T})=(\mathrm{h} v / \mathrm{k})\left(\mathrm{e}^{\mathrm{h} v / k T}-1\right)^{-1}$ (Note: in Rayleigh-Jeans limit hv/kT $\ll 1$ and $\mathrm{J}_{\mathrm{v}}(\mathrm{T})=\mathrm{T}$)

Detection equation

in Rayleigh-Jeans limit: $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{ex}}\left(1-\mathrm{e}^{-\tau_{v}}\right)+\mathrm{T}_{\mathrm{bg}} \mathrm{e}^{-\tau_{v}}$
In practice one measures $\Delta \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{bg}}(\mathrm{ON}-\mathrm{OFF})=\left(\mathrm{T}_{\mathrm{ex}}-\mathrm{T}_{\mathrm{bg}}\right)\left(1-\mathrm{e}^{-\tau_{v}}\right)$

1) $\tau_{v}<1: \Delta T_{A} \approx T \tau_{v}$ measure column density. All photons escape.
2) $\tau_{v} » 1: \Delta T_{A} \approx T \quad$ measure kinetic temperature, but independent of col. dens.

Only photons at cloud surface ($\tau_{v} \leq 1$) escape.

$\mathrm{T}_{\mathrm{ex}}, \tau$, and column density in LTE

For an optically thick line, e.g. $\operatorname{CO}(1-0): \tau_{v} » 1$; the detection equation yields:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{ex}} & =(\mathrm{hv} / \mathrm{k}) \ln ^{-1}\left(\mathrm{hv} / \mathrm{k}\left[\mathrm{~T}_{\mathrm{A}}+\mathrm{J}\left(\mathrm{~T}_{\mathrm{bg}}\right)\right]^{-1}+1\right) \\
& =5.532 \ln ^{-1}\left(5.532\left[\mathrm{~T}_{\mathrm{A}}+0.818\right]^{-1}+1\right)
\end{aligned}
$$

For an optically thin line, e.g. ${ }^{13} \mathrm{CO}(1-0)$: τ_{v} « 1 ; it follows that:
$\tau_{v}=-\ln \left[1-T_{A} /\left(J\left(T_{e x}\right)-J\left(T_{b g}\right)\right)\right]^{-1}$
Column density - derived from transition between levels J and $\mathrm{J}-1$. Detection equation: $\mathrm{T}_{\mathrm{A}}=\mathrm{J}\left(\mathrm{T}_{\mathrm{ex}}\right)\left(1-\mathrm{e}^{-\tau_{v}}\right)+\mathrm{J}\left(\mathrm{T}_{\mathrm{bg}}\right) \mathrm{e}^{-\tau_{v}}$ and $\tau_{v}<1$, solve for τ_{v}. From definition of T_{ex}, the definitions of theEinstein-coefficients, the equation for the absorption coefficient, and the definition of τ

$$
\mathrm{N}_{\mathrm{tot}}=\left(3 h / 8 \pi^{3} \mu^{2}\right)(\mathrm{Z} / \mathrm{J}) \exp \left(\mathrm{h} v / \mathrm{k} \mathrm{~T}_{\mathrm{ex}}\right)\left[1-\exp \left(-\mathrm{h} v / \mathrm{k} \mathrm{~T}_{\mathrm{ex}}\right)\right]^{-1}\left[/\left(\mathrm{J}\left(\mathrm{~T}_{\mathrm{ex}}\right)-\mathrm{J}\left(\mathrm{~T}_{\mathrm{bg}}\right)\right]^{-1} \int \mathrm{~T}_{\mathrm{A}} \mathrm{dv}\right.
$$

with Z the partition function (linking N_{1} to $\mathrm{N}_{\text {tot }}$).

$$
\text { or: } \mathrm{N}_{\mathrm{tot}}=f\left(\mathrm{~T}_{\mathrm{ex}}\right) \int \mathrm{T}_{\mathrm{A}} \mathrm{dv}
$$

Total column density

$$
\mathrm{N}_{\mathrm{tot}}=f\left(\mathrm{~T}_{\mathrm{ex}}\right) \int \mathrm{T}_{\mathrm{A}} \mathrm{dv}
$$

For ${ }^{13} \mathrm{CO}(1-0)$ and $\mathrm{C}^{18} \mathrm{O}(1-0)$ and $\mathrm{T}_{\mathrm{ex}} \approx 5-20 \mathrm{~K}$:

$$
f\left(\mathrm{~T}_{\mathrm{ex}}\right) \approx(1.1 \pm 0.2) \times 10^{15} \mathrm{~cm}^{-2} /(\mathrm{Kkm} / \mathrm{s})
$$

Hence:
$\mathrm{N}_{\text {tot }}=(1.1 \pm 0.2) \times 10^{15} \int \mathrm{~T}_{\mathrm{A}} \mathrm{dv} \mathrm{cm}^{-2} \Rightarrow$ Mass!
If $\tau_{v} \leq 1$ then correction factor $\tau_{0} /\left[1-\exp \left(-\tau_{0}\right)\right]$, with τ_{0} the opt. depth at line center $\tau_{0}=-\ln (1-1 / \mathrm{R})$ and $\mathrm{R}=\mathrm{T}_{\mathrm{A}}\left({ }^{12} \mathrm{CO}\right) / \mathrm{T}_{\mathrm{A}}\left({ }^{13} \mathrm{CO}\right)$.

Therefore:

$$
\mathrm{N}_{\text {tot }}=(1.1 \pm 0.2) \times 10^{15} \times \tau_{0} /\left[1-\exp \left(-\tau_{0}\right)\right] \times \int \mathrm{T}_{\mathrm{A}} \mathrm{dv} \mathrm{~cm}^{-2}
$$

Mass follows via abundances: $\mathrm{N}\left({ }^{12} \mathrm{CO}\right) / \mathrm{N}\left({ }^{13} \mathrm{CO}\right) \sim 90$ and $\mathrm{N}\left({ }^{12} \mathrm{CO}\right) / \mathrm{N}\left(\mathrm{H}_{2}\right) \sim 1 \times 10^{-4}$

Deriving $\mathrm{N}\left(\mathrm{H}_{2}\right)$, total mass

1. Lines (Planck \& Boltzmann)

Detection eqn., LTE, $\tau\left({ }^{12} \mathrm{CO}\right) » 1\left(\Rightarrow \mathrm{~T}_{\mathrm{ex}}\right), \tau\left({ }^{13} \mathrm{CO}\right)<1$
$\mathbf{N}\left({ }^{13} \mathbf{C O}\right)=f\left(\tau_{13}, \mathbf{T}_{\text {ex }}, \Delta \mathbf{v}_{13}\right)+\left[\mathrm{H}_{2}\right] /\left[{ }^{13} \mathbf{C O}\right]=\ldots . \Rightarrow \mathrm{N}\left(\mathrm{H}_{2}\right)_{\mathrm{LTE}}$
${ }^{12} \mathrm{C} / \mathrm{H},{ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ gradients $\Rightarrow\left[\mathrm{H}_{2}\right] /\left[{ }^{13} \mathrm{CO}\right]=f(\mathrm{R})$
Non-LTE transitions: LVG model (full radiation transport eqns.)
2. Lines (empirical)
$\mathrm{N}\left(\mathbf{H}_{2}\right) / \int \mathbf{T}_{12} \mathbf{d v} \equiv X \Rightarrow \mathrm{~N}\left(\mathrm{H}_{2}\right)_{\mathrm{Wco}}$
$X=$ constant or $f(\mathbf{R})$?
3. Virial theorem

Cloud radius (r), linewidth ($\Delta \mathrm{v}$), assumptions about density distribution. For spherical cloud, $\mathbf{n} \propto \mathbf{r}^{-2} \Rightarrow \mathbf{M}_{\text {vir }}=126$ r $\Delta \mathbf{v}^{2}$
Exclude non-bound motions (e.g. outflows); actual density distribution?

4. Dust continuum

$\mathbf{M}=\left(\mathbf{g S}_{\mathbf{v}} \mathbf{d}^{2}\right) / \kappa_{\mathbf{v}} \mathbf{B}\left(\mathbf{T}_{\text {dust }}\right)$
κ_{v}, T-structure, gas-to-dust ratio (g) uncertain

Results of molecular cloud mapping

Type	\mathbf{R} $(\mathbf{p c})$	\mathbf{n} $\left(\mathbf{c m}^{-3}\right)$	\mathbf{M} $\left(\mathbf{M}_{\odot}\right)$	$\Delta \mathbf{V}$ $(\mathbf{k m} / \mathbf{s})$	\mathbf{T} (\mathbf{K})	Cores \& stars
Diffuse	$0.3-3$	$30-500$	$0.5-10^{2}$	$0.7-1.5$	$10 ?$	Low-mass
Dark	$3-10$	10^{2-3}	10^{3-4}	$1-3$	10	Low-mass
Giant	$20-100$	$10-300$	10^{5-6}	$5-15$	$10-20$	High-mass $(+$ Low-mass $)$

Total molecular mass in Galaxy $\sim 2-4 \times 10^{9} \mathrm{M}_{\odot} \approx \mathrm{M}(\mathrm{HI})$

K-ladders connected through collisions. Relative population of K-ladders reflects a thermal distribution at $\mathrm{T}_{\text {kin }}$.

Application: Boltzmann plot

$$
\mathrm{N}_{\mathrm{i}} / \mathrm{g}_{\mathrm{i}}=\left[\mathrm{N}_{\mathrm{tol}} / \mathrm{Q}(\mathrm{~T})\right] \exp \left(-\mathrm{E}_{\mathrm{i}} / \mathrm{kT}\right)
$$

Plot $\ln \left(\mathrm{N}_{\mathrm{i}} / \mathrm{g}_{\mathrm{i}}\right)$ vs. E_{i} :

line with slope $\propto 1 / \mathrm{T}$, intercept $\propto \mathrm{N}_{\text {tot }}$
$\ln \left[\left(3 \mathrm{k} \int \mathrm{TdV}\right) /\left(8 \pi^{3} v \mu^{2} S\right)\right]$

Changing Critical Densities with J

Column density vs. extinction

Hayakawa et al. 2001

Column density vs. extinction

CLUMPY STRUCTURE AND MASS DISTRIBUTIONS

Our Galaxy at 115 GHz

Cloud structure

Interclump gas:
predominantly
atomic

Self-similar, fractal structure

Cloud, clump, core

Figare 4. Herarctical cland structure. The three panels show a represtative view fram cloud to clumit to core. The bulk of the molecular gas (clond; lett penel) is hest seen in OO which, althangt opticaly thick, fathtully outlines the location of the H_{2}. Intemal struciure (dumpe; middle panel) is aberved at higut reantion in an aptisaly
 out. The observations here are of the Hasetz malecular clond and are repscively, Bell Labe $\left(90^{\circ}\right)$, 3 CHAO data $\left(50^{\circ}\right)$, and BIMA data (15).

Clouds
$\mathrm{D} \geq 10 \mathrm{pc}$
$\mathrm{n}\left(\mathrm{H}_{2}\right) \approx 10^{2}-10^{3} \mathrm{~cm}^{-3}$
$\mathrm{M} \geq 10^{4} \mathrm{M}_{\odot}$
$\mathrm{T} \approx 10 \mathrm{~K}$
$\mathrm{CO},{ }^{13} \mathrm{CO}$
$\mathrm{N}(\mathrm{CO}) / \mathrm{N}\left(\mathrm{H}_{2}\right) \approx 10^{-4}$
clumps
$\mathrm{D} \approx 1 \mathrm{pc}$
$\mathrm{n}\left(\mathrm{H}_{2}\right) \approx 10^{5} \mathrm{~cm}^{-3}$
$\mathrm{M} \approx 10^{3} \mathrm{M}_{\odot}$
$\mathrm{T} \approx 50 \mathrm{~K}$
$\mathrm{CS}, \mathrm{C}^{34} \mathrm{~S}$
$\mathrm{N}(\mathrm{CS}) / \mathrm{N}\left(\mathrm{H}_{2}\right) \approx 10^{-8}$
cores
$\mathrm{D} \approx 0.1 \mathrm{pc}$
$\mathrm{n}\left(\mathrm{H}_{2}\right) \approx 10^{7} \mathrm{~cm}^{-3}$
$\mathrm{M} \approx 10-10^{3} \mathrm{M}_{\odot}$
$\mathrm{T} \approx 100 \mathrm{~K}$
$\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CN}$
$\mathrm{N}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{N}\left(\mathrm{H}_{2}\right) \approx 10^{-10}$

Clumpy structure - Self-similarity

Kutner et al. 1977
Batrla et al. 1983
Pauls et al. 1983

Typical clump properties

(based on a study of the RMC - Rosette Molecular Cloud)

- $60-90 \%$ of H_{2} in clumps
$-<\mathrm{n}>\sim 10^{3} \mathrm{~cm}^{-3} ;<\mathrm{n}_{\mathrm{vol}}>\sim 25 \mathrm{~cm}^{-3}$. Thus: volume filling factor $\sim 2.5 \%$ Hence: n (interclump) $\sim 2.5-12.5 \mathrm{~cm}^{-3}$
$-\Sigma(r) \propto r^{-1}$, i.e. $\rho(r) \propto r^{-2}$
- Mass spectrum $\mathrm{dN} / \mathrm{dM} \propto \mathrm{M}^{\alpha}, \alpha=-1.4$ to -1.7 for $\mathrm{M}=1-3000 \mathrm{M}_{\odot}$. Idem for clouds as a whole

Self-similarity - Clump mass distribution

Fig. 16. Clampmass spectram derivedfrom ${ }^{13} \mathrm{COJ}=2 \rightarrow 1$ dana obtained with KOSMA (85 clumps) and IRAM. The corrinnos line delineares 1 fit to the power law functiond $N / d M \propto M^{-\infty}$. The res ulting index is $a=1.61$. The dashed lines of the error bars mart the mass range beyond the turnover poirrs and the IRAM high-mass end which are not included in the fit.

Rosette Molecular Cloud

Schneider et al. 1998

Kramer et al. 1998

Power-law mass distribution $10^{-4} \leq \mathrm{M} \leq 10^{4} \mathrm{M}_{\odot}: \mathrm{dN} / \mathrm{dM} \propto \mathrm{M}^{-1.7 \pm 0.1}$ Most clumps at low-mass end, but most of mass in the few high-mass clumps

Self-similarity - Clump mass distribution

Fig. 16. Clampmass spactram derivedfrom ${ }^{13} \mathrm{COJ}=2 \rightarrow 1$, wi.h KOSMA (85 clumps) and IRAML The corrinnos i a fit to the power law fnnction $d N / d M \circ M^{-6}$. The re is $a=1.61$. The dashed lines of the error bars marl the beyond the tminover poirss and the IRAM high-mass e| not included in the fit.

Rosette Molecular Cloud Schneider et al. 1998

Power-law mass distribution 10 Most clumps at low-mass end, clumps

Kramer et al. 1998

Simba results 1

Multiple cores \& chains

DSS + SIMBA (1.2-mm cont.)

AND: 95 pre-stellar or pre-cluster cores!

Beltran, Brand, Cesaroni et al. 2006

Simba results 2: clump mass function

Fig. 10. Left top panel: the mass spectrum of the 1.2 mm clumps detected at a distance $<6 \mathrm{kpc}$. The solid line represents the Salpeter IMF, $\mathrm{d} N / \mathrm{d} M \propto M^{-2.35}$; the dotted line is a -2.1 power law, obtained from the least square fit to the data, and the dashed line is a -1.7 power law. The vertical dot-dashed line indicates the completeness limit at 6 kpc . Right top panel: the normalized cumulative mass distribution of clumps with masses above the completeness limit at 6 kpc . The solid, and dashed lines are the same as in the left panel, and the dotted line is a -1.9 power law, obtained from the least square fit to the data. Left bottom panel: same as above for clumps detected at a distance $<2 \mathrm{kpc}$. The vertical dot-dashed line indicates the completeness limit at 2 kpc . Right bottom panel: same as above for clumps with masses above the completeness limit at 2 kpc .

$$
\text { Slope } \quad 10-100 \mathrm{M}_{\odot}:-(1.5-1.9) ; \quad>100 \mathrm{M}_{\odot}:-2.1
$$

Beltran, Brand, Cesaroni et al. 2006

Serpens: Testi \& Sargent 1998

26 pre-stellar clumps Slope -2.1

IMF:
Salpeter: -2.5 for $M=1-10 M_{\odot}$. Miller-Scalo: -1.5 for $M<1 M_{\odot}$.

60 pre-stellar clumps in ρ Oph Slope -1.5 for $M=0.1-0.5 M_{\odot}$.
-2.5
0.5-3 M_{\odot}.

Ophiuchus: Motte et al. 1998

Typical clump properties

(based on a study of the RMC - Rosette Molecular Cloud; Blitz et al.)
$-60-90 \%$ of H_{2} in clumps
$-<\mathrm{n}>\sim 10^{3} \mathrm{~cm}^{-3} ;<\mathrm{n}_{\mathrm{vol}}>\sim 25 \mathrm{~cm}^{-3}$. Thus: volume filling factor $\sim 2.5 \%$ Hence: n (interclump) $\sim 2.5-12.5 \mathrm{~cm}^{-3}$
$-\Sigma(r) \propto r^{-1}$, i.e. $\rho(r) \propto r^{-2}$

- Mass spectrum $\mathrm{dN} / \mathrm{dM} \propto \mathrm{M}^{\alpha}, \alpha=-1.4$ to -1.7 for $\mathrm{M}=1-3000 \mathrm{M}_{\odot}$. Idem for clouds as a whole
- Most clumps not gravitationally bound, but most mass is in clumps that are.

Yet clumps are not expanding: pressure-confinement

- Inside clump: $\mathrm{P}_{\text {int }} / \mathrm{k} \sim 6-12 \times 10^{4} \mathrm{Kcm}^{-3}$ (bulk gas motions)

Inside GMC, due to gravity: $\mathrm{P}_{\text {grav }} / \mathrm{k} \sim 8 \times 10^{4} \mathrm{Kcm}^{-3}$
$\mathrm{P}_{\mathrm{HI}} / \mathrm{k} \sim 10 \times 10^{4} \mathrm{Kcm}^{-3}$
\Rightarrow clumps confined by interclumps gas (which is HI)

MOLECULAR GAS KINEMATICS rotation curve and kinematic distances

The observed velocity field

(Brand \& Blitz 1993)

Kinematic distances I

Observed velocity field is useful to determine kinematic distances, but its range of use is limited (e.g., $<2 \mathrm{kpc}$ from Sun in inner Galaxy)

Therefore: construct the rotation curve (Θ versus R)

Transform observed radial velocities and spectro-photometric distances into galactic rotation velocity Θ and galactocentric distance R:
$\mathrm{V}_{\text {lsr }}=\left(\Theta \mathrm{R}_{0} / \mathrm{R}-\Theta_{0}\right) \sin l \cos b$ for circular rotation.
$\omega=\Theta / R$: angular rotation velocity $\Rightarrow \mathrm{V}_{\text {lsr }}=\mathrm{R}_{0}\left(\omega-\omega_{0}\right) \sin l \cos b \Rightarrow$
$\omega=\mathrm{V}_{\mathrm{lsI}} /\left(\mathrm{R}_{0} \sin l \cos b\right)+\omega_{0}$
$\mathrm{R}=\left(\mathrm{d}^{2} \cos ^{2} b+\mathrm{R}_{0}{ }^{2}-2 \mathrm{R}_{0} \mathrm{~d} \cos b \cos l\right)^{1 / 2}$
Advantage: get distances everywhere.
Disadvantage: in some regions erroneous because streaming motions are not included.

Rotation curve from HI and CO

Fit a function of type:

$$
\omega / \omega_{0}=a_{1}\left(R / R_{0}\right)^{a_{2}-1}+a_{3}\left(R / R_{0}\right)
$$

Implying
$\Theta / \Theta_{0}=a_{1}\left(R / R_{0}\right)^{a_{2}}+a_{3}$
$\mathrm{a}_{1}=1.0077, \mathrm{a}_{2}=0.0394, \mathrm{a}_{3}=0.00712$
(Brand \& Blitz 1993)

Kinematic distances II

Rotation curve: $\Theta=\Theta_{0}\left(\mathrm{R} / \mathrm{R}_{0}\right)^{\mathrm{a}}$ with $\Theta_{0}=220 \mathrm{~km} / \mathrm{s}, \mathrm{R}_{0}=8.5 \mathrm{kpc}$
In general: $\mathrm{V}_{1 \mathrm{ls}}=\mathrm{R}_{0}\left(\omega-\omega_{0}\right) \sin l \cos b$, and $\omega=\Theta / \mathrm{R}$.
It follows that:

$$
\begin{aligned}
& \mathrm{R}=\left(\left[\left(\mathrm{V}_{\text {lsr }} / \sin l \cos b\right)+\Theta_{0}\right] / \Theta_{0} \mathrm{R}_{0}^{1-\mathrm{a}}\right)^{1 /(\mathrm{a}-1)} \text { and } \\
& \mathrm{d}=\left[\mathrm{R}_{0} \cos l \pm\left(\mathrm{R}^{2}-\mathrm{R}_{0}^{2} \sin ^{2} l\right)\right]^{0.5} / \cos b
\end{aligned}
$$

For outer Galaxy: choose ' + '
For inner Galaxy, there are 2 solutions: distance ambiguity!

Distance ambiguity in inner Galaxy

Nakanishi \& Sofue 2003 PASJ

$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{0} \sin l$: subcentral (tangent) point. Maximum $\mathrm{V}_{\text {lsr }}$ long 1.o.s.

Velocity crowding

Arched in green:
$\mathrm{dV} / \mathrm{dr} \leq 6 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$

Artificial density structures

(Burton 1988)

Streaming motions

$\mathrm{V}_{\text {lsr }}$ - residuals: observed - expected from rotation curve

(Brand \& Blitz 1993)
(Burton \& Bania 1974)

$$
\mathrm{V}_{\text {lsr }} \text { - residuals: obser }
$$

Trigonometric parallax

(Reid - IAU242, 2007)

The new Galaxy

(Reid - IAU242, 2007)

STAR FORMATION

Star formation: in molecular clouds

Star formation catastrophe?

$M_{\text {cloud }} \approx 10^{4-5} M_{\odot}$ » $M_{\text {Jeans }} \approx 10^{2} M_{\odot} \Rightarrow$ collapse on free-fall timescale $t_{f f} \approx \sqrt{ }(3 \pi / 32 G \rho) \approx 10^{6} y r s$.

On galactic scale:
$S F R=M_{G M C} / t_{f f} \approx 10^{9} M_{\odot} / 10^{6} \mathrm{yrs} \approx 10^{3} M_{\odot} / \mathrm{yr}$
» $S F R_{\text {obs }} \approx 3 M_{\odot} / y r$

Clouds are prevented from total collapse!

SFE: Star formation efficiency

TABLE 2 Star-formation efficiencies for nearby embedded clusters

Cluster name	Core mass $\left(M_{\odot}\right)$	Stellar mass $\left(M_{\odot}\right)$	SFE	References
Serpens	300	27	0.08	Olmi \& Testi 2002
Rho Oph	550	53	0.09	Wilking \& Lada 1983
NGC 1333	950	79	0.08	Warin et al. 1996
Mon R2	1000	341	0.25	Wolf et al. 1990
NGC 2024	430	182	0.33	E.A. Lada et al. 1991a,b
NGC 2068	266	113	0.30	E.A. Lada et al. 1991a,b
NGC 2071	456	62	0.12	E.A. Lada et al. 1991a,b

Lada \& Lada 2003 ARAA

Cloud support

Kinetic energy (bulk motions, mostly from clumps): $T / W \approx 0.5$

Clouds are supported by turbulence and magnetic fields

B-field: Zeeman splitting

In presence of B-field, hyperfine splitting of levels is modified: spectral line splits in 2 , centered on primary component, with opposing polarisations.

$$
\frac{\Delta v_{\text {mag }}}{\Delta v_{\text {therm }}} \approx 10^{-3}\left(\frac{B}{\mu \mathrm{G}}\right)\left(\frac{T_{k}}{10 \mathrm{~K}}\right)^{-1 / 2}
$$

$3.27 \mathrm{~Hz} / \mu \mathrm{G} \mathrm{OH} @ 1665 \mathrm{MHz}$
$1.96 \mathrm{~Hz} / \mu \mathrm{G} \mathrm{OH} @ 1665 \mathrm{MHz}$

$7.210^{-4} \mathrm{~Hz} / \mu \mathrm{G} \mathrm{NH}_{3} @ 22 \mathrm{GHz}$
$2.310^{-3} \mathrm{~Hz} / \mu \mathrm{G} \mathrm{H} \mathrm{H}_{2} \mathrm{O} @ 22 \mathrm{GHz}$
Güsten et al. 1994

B-field: Zeeman splitting

In presence of B-field, hyperfine splitting of levels is modified: spectral line splits in 2, centered on primary component, with opposing po

Measured values:

HI 21 cm , OH 18 cm : few $\mu \mathrm{G}$ (diffuse ISM; $\mathrm{n}<100 \mathrm{~cm}^{-3}$) few $\mu \mathrm{G}$ (dark cloud envelopes; $\mathrm{n} \sim 10^{3} \mathrm{~cm}^{-3}$) few $\mu \mathrm{G}$ (OH masing layers; $\mathrm{n} \sim 10^{7-8} \mathrm{~cm}^{-3}$)

$$
\mathrm{H}_{2} \mathrm{O} 22 \mathrm{GHz}: \quad 50 \mathrm{mG} \text { (maser spots; } \mathrm{n} \sim 10^{10} \mathrm{~cm}^{-3} \text {) }
$$

$$
\frac{\Delta v_{\text {mag }}}{\Delta v_{\text {therm }}} \approx 10^{-3}\left(\frac{B}{\mu \mathrm{G}}\right)\left(\frac{I_{k}}{10 \mathrm{~K}}\right)
$$

$3.27 \mathrm{~Hz} / \mu \mathrm{G} \mathrm{OH} @ 1665 \mathrm{MHz}$
$1.96 \mathrm{~Hz} / \mu \mathrm{G} \mathrm{OH} @ 1665 \mathrm{MHz}$

$7.210^{-4} \mathrm{~Hz} / \mu \mathrm{G} \mathrm{NH} 3$ @ 22 GHz
$2.310^{-3} \mathrm{~Hz} / \mu \mathrm{G} \mathrm{H} \mathrm{H}_{2} \mathrm{O} @ 22 \mathrm{GHz}$
Güsten et al. 1994

Results for Field Strength

Clump stability

Forces working on clumps:

- Clump (self-) gravity
- Clump turbulence (and thermal pressure)
- Interclump pressure
- Magnetic fields

Clump virial theorem (e.g. Fleck 1988):

$$
4 \pi \mathrm{r}^{3} \mathrm{P}=3 \mathrm{M}_{\mathrm{CO}} \sigma^{2}-\mathrm{GM}_{\mathrm{CO}}^{2} / \mathrm{r}+\mathrm{B}^{2} / 8 \pi
$$

Expressed in pressures:

$$
\begin{gathered}
\mathrm{P} / \mathrm{k}=\rho \sigma^{2} / \mathrm{k}-\mathrm{GM}_{\mathrm{CO}} \rho / 3 \mathrm{rk}+\mathrm{B}^{2} / 8 \pi \mathrm{k} \\
\mathbf{P}_{\text {ext }} / \mathrm{k}=\mathbf{P}_{\text {turb }} / \mathrm{k}+\mathbf{P}_{\text {grav }} / \mathrm{k}+\mathbf{P}_{\text {magn }} / \mathrm{k} \\
\hline
\end{gathered}
$$

$$
\mathrm{P}_{\text {turb }} / \mathrm{P}_{\text {grav }}=\alpha=126 \mathrm{r}[\mathrm{pc}] \Delta \mathrm{v}\left[\mathrm{kms}^{-1}\right]^{2} / \mathrm{M}_{\mathrm{CO}}=\mathrm{M}_{\mathrm{vir}} / \mathrm{M}_{\mathrm{CO}}: \text { virial }
$$

parameter

$$
P_{\mathrm{magn}} / \mathrm{k}=2.9 \times 10^{4} \mathrm{Kcm}^{-3} \text { for } 10 \mu \mathrm{G}
$$

Interclump pressure (self-gravity GMC): $\mathrm{P}_{\mathrm{ext}} / \mathrm{k}=1.7 \times 10^{4}-5.9 \times 10^{4}$ Kcm^{-3}

Clump pressure ratios

Turbulence
\&
gravity

Turbulence
\&
total gravity

Turbulence, total gravity
\&
magnetic field
pressure

Brand et al. 2001

Formation of stars of high and low mass

Two mechanisms:
Accretion onto the protostar: Static envelope: $n \propto R^{-2}$ Infall zone: $n \propto R^{-3 / 2}$
$\mathrm{t}_{\mathrm{acc}}=\mathrm{M}_{*} /\left(\mathrm{dM}_{\mathrm{acc}} / \mathrm{dt}\right)$
Contraction of the protostar: $\mathrm{t}_{\mathrm{KH}}=\mathrm{GM}^{2} / \mathrm{R}_{*} \mathrm{~L}_{*}$

- Stars $>8 \mathrm{M}_{\text {sun }}: \mathrm{t}_{\mathrm{KH}}>\mathrm{t}_{\mathrm{acc}}$
- Stars $<8 \mathrm{M}_{\text {sun }}: \mathrm{t}_{\mathrm{KH}}<\mathrm{t}_{\mathrm{acc}}$
\Rightarrow The high-mass stars form while still accreting

Formation of stars of high and low mass

Two mechanisms:
Accretion onto the protostar: Static envelope: $n \propto R^{-2}$ Infall zone: $n \propto R^{-3 / 2}$
$\mathrm{t}_{\mathrm{acc}}=\mathrm{M}_{*} /\left(\mathrm{dM}_{\mathrm{acc}} / \mathrm{dt}\right)$
Contraction of the protostar: $\mathbf{t}_{\mathrm{KH}}=\mathrm{GM}^{2} / \mathrm{R}_{*} \mathrm{~L}_{*}$

- Stars $>8 \mathrm{M}_{\text {sun }}: \mathrm{t}_{\mathrm{KH}}>\mathrm{t}_{\mathrm{acc}}$
- Stars $<8 \mathrm{M}_{\text {sun }}: \mathrm{t}_{\mathrm{KH}}<\mathrm{t}_{\mathrm{acc}}$
\rightarrow The high-mass stars form while still accreting

Palla \& Stahler (1990)

Normal star: evolutionary status determined by location HRD:

$$
L, T_{\text {eff }}
$$

Embedded YSOs: associated with natal gas \& dust Cannot be placed in HRD

Protostellar stage: circumstellar gas \& dust: absorbs and reprocesses radiation embedded object Has extent >> stellar photosphere \rightarrow dust has wide range of T SED wider than single-T BB;
shape SED depends on nature \& distribution of circumstellar material
More evolved object (pre-ms, ms): envelope, disk almost gone Shape of SED is f(evolutionary state)

Observationally:
YSOs fall into 4 classes, based on shape of SED

Stars $<\mathbf{8 M}_{\mathbf{O}}$

Prestellar dense core
$-1000000 \mathrm{yr}$
unstable isothermal clump
Embedded phase
far-IR

Embedded phase: protostars

YSO ENERGY DISTRIBUTIONS

Pre-Main Sequence Stars:

$\log (v) \longrightarrow$
C. Lada, 1999, 2000

Class I:

-SED broader than single-T BB $-A \dagger \lambda>2 \mu \mathrm{~m}$ SED rises with λ : huge IR-excess
-Deeply embedded; detected in NIR (freq. assoc'd with RNe) -Often associated with outflows $-M_{\text {circumst }}(r<1000 A U) \ll M_{*}$ -Age ca. 1-5 $\times 10^{5} \mathrm{yrs}$

Class 0:

-Much more extincted \& embedded;
-SED peak in submm; not detected at $\lambda<20 \mu \mathrm{~m}$
-SED similar to BB at $\mathrm{T}=20-30 \mathrm{~K}$
-All have energetic, v. highly collimated outflows.
$-M_{\text {circumst }}(r<1000 A U) \approx M_{*}$
-Constitute 10\% of embedded sources
-Age ca. $10^{4} \mathrm{yrs}$

Protostellar nature embedded YSOs: evidence

Protostar: objects in process of accumulating into star-like configuration the bulk of the material they will contain as ms stars

1) SED can be modeled as embryonic stellar core + circumstellar disk + massive gas \& dust envelope with densitv structure as predicted by theory for

fits: rotating-collapsing isothermal protostellar models Mass infall rate $\sim 5 \times 10^{-6} \mathrm{M}_{\odot} / \mathrm{yr}$

Figure 1.2: From Dullemond et al. (2006). Build-up of the SED of a flaring circumstellar disk and the origin of various components: the near infrared bump is supposed to originate in the puffed-up inner rim, the infrared dust features (as the silicate ones between $10 \mu \mathrm{~m}$ and $20 \mu \mathrm{~m}$) from the warm surface layer, and the underlying continuum from the deeper and cooler disk regions. Typically the near and mid-infrared emission comes from small radii, while the farinfrared and the millimeter emission come from the outer disk regions.

Isella 2006: Dullemond et al. 2006

Protostellar nature embedded YSOs: evidence

1) SED can be modeled as embryonic stellar core + circumstellar disk + massive gas \& dust envelope with density structure as predicted by theory for rotating, infalling protostellar cloud cores.
2) Featureless spectrum, requires hot dust at << 1 AU to provide additional cont. flux to 'veil' absorption lines. Infall models acount for that.

Protostellar nature embedded YSOs: evidence

1) SED can be modeled as embryonic stellar core + circumstellar disk + massive gas \& dust envelope with density structure as predicted by theory for rotating, infalling protostellar cloud cores.
2. Typical K Band Absorption Features

Fig. I. K-band absopption features. The indicated NaL CaI , and CO featares are commonly soen in the spectra of late-cype stars sweh whe the tyal MK standards HD 3600 and HR 4267. Class \square (and III) YSOs (such as GS8 29 shown) usually show similar features, but Class 1 YSOs (such as IRS 43 shown) usually do not show any early- of late-cype festures. The dath shown are enlarged subregions of spectra precented in Appendix, but baseline continum slopes have been removed.
es hot dust at << 1 AU Ix to 'veil' absorption - that.

Protostellar nature embedded YSOs: evidence

1) SED can be modeled as embryonic stellar core + circumstellar disk + massive gas \& dust envelope with density structure as predicted by theory for rotating, infalling protostellar cloud cores.
2) Featureless spectrum, requires hot dust at << 1 AU to provide additional cont. flux to 'veil' absorption lines. Infall models acount for that.
3) Only viable source for outflow energy is gravity (from infall).
4) Direct kinematic evidence for infall motions found in Class 0 sources!

Protostellar infall

Detecting infall from opt. thick line

B335; Zhou et al. 1993

Revealed phase:
 Pre-ms stars

YSO ENERGY DISTRIBUTIONS

Class II:

-SED peaks in visible or NIR
-SED broader than single-T BB
$-A+\lambda>2 \mu \mathrm{~m}$ SED falls with λ (power-law):
IR-excess, but smaller than Class I
-Disk, but no massive envelope
$-M_{\text {disk }} \approx 0.01-0.1 M_{\odot}$

- Accretion rate $\sim 10^{-8} \mathrm{M}_{\odot} / \mathrm{yr}$
-in SFRs: $10 \times$ more than ClassI -in optical, ClassII are CTTS

SED can be fitted with model of disk with T-gradient, reprocessing and reradiating light from central star

Figure 15. The composite SED of seven Class II stars along with that (solid line) of a model circumstellar disk. (From Adams, Lada and Shu 1988).

ClassII model fit

Figure 16. Schematic diagram of a spatially thin, optically thick disk and its emergent spectral energy distribution. The disk spectrum is composed of a superposition of blackbodies of varying temperature.

Disk: each annulus has area $2 \pi R \Delta R$ and radiates as $B B$ with $T(R)$ SED is superposition of series of $B B$-curves If $T(R) \sim R^{-n}$, then (Wien's law) max. emission at $v \sim T(R) \sim R^{-n}$. Luminosity each annulus: $L_{v} d v=2 \pi R \Delta R \sigma T(R)^{4} \sim R^{2-3 n} d v \sim v^{3-2 / n}$.

For a SED, $v L_{v} \sim v^{4-2 / n}$.

Revealed phase:
 Pre-ms stars

Class III:

-SED peak in visible/NIR
-SED similar to single-T BB; interpreted as photospheres of young stars with extinction.
-No significant amounts circumstellar gas, dust
-ClassIII are WTTS
-Age ca. $10^{6}-10^{7}$ yrs
No IR excess, confused with fore- \& background stars in SFRs. But are X-ray sources.

Evolutionary sequence low-mass YSOs

Evolution Class $0 \Rightarrow I \Rightarrow$ II: requires removal circumstellar material in infalling envelope

Evolution Class II \Rightarrow III:
Requires clearing of circumstellar disk
Total accretion: NO - because SFE is very low ($M_{*} \ll M_{\text {core }}$)
Therefore: very early on cloudy material physically removed Most likely by bipolar outflows, originating from stellar wind (virtually all Class 0,I drive molecular outflows).

A protostar can only gain mass if it loses mass at same time

Disk lifetimes

Disk fraction vs. \log (cluster age) for ca. 3500 stars, $0.3-1 \mathrm{M}_{\odot}$

Stars with IR-excess

Disks... with HST (IR)

DiSkSo

GG Tau; Guilloteau et al., 1999

Simon et al., 2000

Embedded Outflow in HH 46/47
NASA / JPL-Caltech / A. Noriega-Crespo [SSC/Caltech]

Spitzer Space Telescope • IRAC

Two-level system

$$
n_{2} / n_{1}<1
$$

Maser
Short-lived; pref. decays
to longer-lived level 2
$n_{2}>n_{1}$: population inversion

$$
n_{2} / n_{1}=\left(g_{2} / g_{1}\right) \exp \left(-\Delta E / k T_{e x}\right) \quad n_{2}>n_{1}: T_{e x}<0
$$

In region where mol's have same velo: avalanche of induced emission

Energy levels $\mathrm{H}_{2} \mathrm{O}$

Kinematics of the masing gas

Star formation theory \in two main kinds of motions expected:

1) rotation and contraction (accretion disk); 2) expansion (jet/outflow system)

Kinematical Models

Conical Outflow

Hubble motion: $v=a \cdot r$
Free parameters
α_{c}, δ_{c} : cone vertex coordinates
P_{c}, I_{c} : position and z-inclination angle of the cone axis
θ : (semi-)opening angle of the cone
a : "Hubble constant"

Keplerian Disk

Keplerian Motion: $V=\left(G M / R^{2}\right)^{1 / 2}$

Free parameters

α_{D}, δ_{D} : disk center coordinates
$\mathrm{P}_{\mathrm{d}}, \mathrm{I}_{\mathrm{d}}$: position and z-inclination angle of the disk axis
M_{c} : central mass

The best fit is obtained minimizing the
(for the N detected features and the
subset of N_{p} measured proper motions)

$$
\square^{2}=\sum_{i=1}^{N}\left[\frac{⿶_{z}^{i}-v_{z}^{r} \square V_{z}^{i}-V_{z}^{r}}{\square V_{z}^{i}}\right] \square \sum_{i=1}^{N_{p}} \sum_{j=1}^{2}\left[\frac{\square v_{j}^{i}-v_{j}^{r} \square V_{j}^{i}}{\square V_{j}^{i}}\right]^{2}
$$

IRAS 20126+4104

Moscadelli et al. 2005, A\&A 438, 889

MASSIVE STAR FORMATION in the Galaxy

The role of massive stars

* Stir up the ISM: massive outflows, winds, champagne flows, supernovae Thus can both destroy their natal molecular cloud AND trigger new star formation.
Sculpt structure \& energetics of ISM in galaxies
* Energy and momentum input ISM (cosmic ray production)
* UV: ionization, HII regions (delineate spiral structure)
* Enrichment of the ISM (metals, dust)
* Source of neutron stars, BHs, high-energy phenomena such as XRBs, GRBs

Galactic Ecology: Massive stars regulate ISM

Massive stars interacting with their environment

Outflow

UV-radiation (ionization)

Stellar wind

Massive stars: giant bubbles/gas shells

30 Doradus Nebula (LMC):
superhells

Massive stars: triggers of star formation

Massive stars - HII regions: outline spiral structure

R. Kennicutt (IAU227)

The problem with massive stars

Massive stars important - but not well-understood

WHY?

They are rare and have a short lifetime
Difficult to observe during formation
Complex theoretical problem

The Initial Mass Function

Fundamental ingredient for study of star formation and galaxy evolution

IMF: Frequency distribution of stellar masses at birth Number of stars per unit of (logarithmic) mass:

$$
\begin{aligned}
& \xi(\log m) \propto m^{\Gamma} \text { or } \xi(m) \propto m^{\gamma} \\
& \xi(\log m)=(\ln 10) \cdot m \xi(m)
\end{aligned}
$$

$$
\text { Scalo (1998): } \begin{aligned}
\Gamma & =-0.2 \pm 0.3 \text { for } 0.1<M<1 M_{\odot} \\
& =-1.7 \pm 0.3 \text { for } 1<M<10 M_{\odot} \\
& =-1.3 \pm 0.3 \text { for } 10<M<100 M_{\odot} \\
\text { i.e.: } \gamma & =-1.2 \pm 0.3 \text { for } 0.1<M<1 M_{\odot} \\
& =-2.7 \pm 0.3 \text { for } 1<M<10 M_{\odot} \\
& =-2.3 \pm 0.3 \text { for } 10<M<100 M_{\odot}
\end{aligned}
$$

There are relatively few of them:

Initial mass function

They have very short lifes

P. Schilke (2005)

These two facts combined:

IMF => 1 star of $\mathbf{3 0} \mathrm{M}_{\odot}$ created for every 100 stars of $\mathbf{1 M}{ }_{\odot}$ A $1 \mathrm{M}_{\odot}$ star lives 2000 times longer than a $\mathbf{3 0} \mathrm{M}_{\odot}$ star

hence

At any given time there are 2×10^{5} more $1 M_{\odot}$ stars than there are $\mathbf{3 0 M}_{\odot}$ stars!
and yet
$\mathrm{L}\left(\mathbf{3 0 M}_{\odot}\right)=\mathbf{1 0}^{5} \mathrm{~L}\left(1 \mathrm{M}_{\odot}\right)=>$ total luminosity is dominated by high-mass stars!

Formation of low- and high-mass stars

Infall of circumstellar material onto protostar

Two relevant timescales:

1) Kelvin-Helmholtz timescale
(timescale on which a star gets its luminosity from gravitational contraction)

$$
\left.\begin{array}{l}
\tau_{\text {KH }}=\mathbf{E}_{\text {grav }} /\left(\mathbf{d E}_{\text {grav }} / \mathbf{d t}\right) \\
\mathbf{E}_{\text {grav }}=\mathbf{G M}^{2} / \mathbf{R}, \quad \mathbf{d E}_{\text {grav }} / \mathbf{d t}=\mathbf{L} \\
\mathbf{L} \propto \mathbf{M}^{3.2} ; \mathbf{R} \propto \mathbf{M}^{0.6}=>\tau_{\text {KH }} \propto \mathbf{M}^{-1.8}
\end{array}\right\} \Rightarrow \tau_{\text {KH }}=\mathbf{G M}^{2} / \mathbf{R L}
$$

$$
10^{7} \mathrm{yr} / 1 \mathrm{M}_{\odot} \text { star; } 10^{5} \mathrm{yr} / 10 \mathrm{M}_{\odot} \text { star }
$$

2) Accretion rate: $\mathbf{d M} / \mathrm{dt} \approx \mathrm{a}^{\mathbf{3}} / \mathrm{G} \approx 10^{-5} \mathrm{M}_{\odot} / \mathbf{y r}$ $10^{5} \mathrm{yr} / 1 \mathrm{M}_{\odot}$ star; $10^{6} \mathrm{yr} / 10 \mathrm{M}_{\odot}$ star

The problem of $(\mathbf{O B})$ star formation:

accretion: $\mathbf{t}_{\text {acc }}=\mathbf{M}_{\text {star }} /(\mathbf{d M} / \mathbf{d t})_{\text {acc }}$
contraction: $\mathbf{t}_{\mathbf{K H}}=\mathbf{G M}_{\text {star }} / \mathbf{R}_{\text {star }} \mathbf{L}_{\text {star }}$
$\mathrm{M}_{\text {star }}>8 \mathrm{M}_{\odot} \rightarrow \mathrm{t}_{\mathrm{acc}}>\mathrm{t}_{\mathrm{KH}}($ Palla \& Stahler 1993)

High-mass stars reach ZAMS still accreting!
Spherical symmetry $\rightarrow \mathbb{P}_{\text {radiation }}>\mathbb{P}_{\text {ram }} \rightarrow$
\rightarrow stars $>8 \mathrm{M}_{\odot}$ should not form!??

Proposed solutions

- Accretion models:
(non-spherical) inside-out collapse
(Wolfire \& Cassinelli 1978, Yorke \& Sonnhalter 2002, Tan \& McKee 2003)
Rotation + ang. mom. conservation \rightarrow Disk: focuses accretion, boosts ram pressure
Outflow \rightarrow channels stellar photons, lowers radiation pressure
- Coalescence models: many low-mass stars merge into one massive star (Bonnell et al. 1998)

Implications \& (testable) predictions

- Accretion models :
- presence of massive disks
\& massive collimated outflows: likely / yes
- high accretion rates $\left(\geq 10^{-5} M_{\odot}\right)$: evidence
- isolated star formation: possible
- formation at cluster center: with the other cluster members
- Coalescence models :
- presence of massive disks
\& massive collimated outflows: unlikely
- stellar collisions: not observed
- isolated star formation: impossible
- formation at cluster center: after the other cluster members
- high stellar density required ($>10^{7} \mathbf{p c}^{-3}$)
\rightarrow Detection of collimated massive outflows and accretion disks is crucial to understand $\mathrm{O}-\mathrm{B}$ star formation

Hot molecular cores

- Typical values $<0.1 \mathrm{pc},>100 \mathrm{~K}, 10^{7} \mathrm{~cm}^{-3}$, $>10^{4} \mathrm{~L}_{\mathrm{O}}$
- Many molecules: evaporation of grains
- Sometimes contain hypercompact HII regions
\rightarrow Contain OB stars in formation
\rightarrow Probable presence of infall (accretion) and rotation (disks)

Hot molecular cores

- Typical values $<0.1 \mathrm{pc},>100 \mathrm{~K}, 10^{7} \mathrm{~cm}^{-3}$, $>10^{4} \mathrm{~L}_{\mathrm{O}}$
- Many molecules: evaporation of grains
- Sometimes contain hypercompact HII regions
\rightarrow Contain OB stars being formed
\rightarrow Probable presence of infall (accretion) and rotation (disks)

The search for disks: where

IRAS 20126+4104

α (J2000)
Cesaroni et al.

IRAS 20126+4104

Results of disk search

Two types of objects found:

Disks in B stars

- $\mathrm{M}<10 \mathrm{M}_{\mathrm{O}}$
- R ~ 1000 AU
- $\mathbb{L} \sim 10^{4} \mathrm{~L}_{\mathrm{O}}$
- $(\mathrm{dM} / \mathrm{dt})_{\text {star }} \sim 10^{-4} \mathrm{M}_{\mathbf{o}} / \mathrm{yr}$
- $\mathrm{t}_{\text {rot }} \sim 10^{4} \mathrm{yr}$
- $\mathrm{t}_{\text {acc }} \sim \mathrm{M} /(\mathrm{dM} / \mathrm{dt})_{\text {star }} \sim 10^{5} \mathrm{yr}$
$\rightarrow \mathrm{t}_{\text {acc }} \gg \mathrm{t}_{\text {rot }}$
\rightarrow equilibrium, circumstellar structures

Toroids in O stars

- $\mathrm{M}>100 \mathrm{M}_{\mathrm{O}}$
- $\mathrm{R} \sim 10000 \mathrm{AU}$
- $\mathrm{L} \gg 10^{4} \mathrm{~L}_{\mathrm{O}}$
- $(\mathrm{dM} / \mathrm{dt})_{\text {star }}>10^{-3} \mathrm{M}_{\mathbf{0}} / \mathrm{yr}$
- $\mathrm{t}_{\text {rot }} \sim 10^{5} \mathrm{yr}$
- $\mathrm{t}_{\text {acc }} \sim \mathrm{M} /(\mathrm{dM} / \mathrm{dt})_{\text {star }} \sim 10^{4} \mathrm{yr}$
$\rightarrow \mathrm{t}_{\mathrm{acc}} \ll \mathrm{t}_{\text {rot }}$
\rightarrow non-equilibrium, circumcluster structures

Is there a mass upper limit?

IMF => massive stars always form in clusters. So can only study upper limit in mass by observing cluster population.

Requirements:

* cluster stellar mass $>\mathbf{1 0}^{4} \mathrm{M}_{\odot}$
* $\mathbf{1} \mathrm{Myr}<$ cluster age $<\mathbf{3} \mathbf{~ M y r}$
* need to see individual stars
* need to be able to separate stars

In the Galaxy: the Arches cluster (@ Galactic Centre)

Arches Cluster

HST (1999)
Figer, Nature (2005)

Arches-cluster mass function

If there is no mass cut-off, chances of not finding such massive stars is:
10^{-8} if 18 are expected (slope -1.35)
10^{-14} if 33 are expected (slope -0.90)

Mass cut-off at $150 \mathrm{M}_{\odot}$
$\log (M / M s u n)$
Figer, Nature (2005)

Are there stars more massive than $150 \mathrm{M}_{\odot}$?

Pistol star: 150-250 \mathbf{M}_{\odot} ?
But: not single?

G0.15-0.05

Figer et al. 1999, ApJ, 525, 759

SUMMARY

Possibile evolutionary
 sequence for OB-stars

Massive stars are rare, but very influential for Galactic "ecology";

HMPO difficult to find, and hard to study;

Outflows \& disks \& high accretion rates found, hence probably form by accretion (early B-stars; also O-stars?);

High-mass cut-off exists ($150 \mathrm{M}_{\odot}$).

