ALMA SYNERGIES APEX, HERSCHEL, CMB experiments

Paola Andreani

ALMA, APEX, Herschel synergies

TALK OUTLINE

- Synergies?
- Explore the 'cool' Universe: the origins of planets, stars and galaxies.
- ALMA, APEX, HERSCHEL+others
 'complementary' instruments
- Common Scientific Projects
 - Stars and planets formation
 - Spectral line surveys
 - Nearby spirals, LSBGs, DGs, local AGN
 - CIRB, high-z sources/AGN
 - the primordial Universe (CMB, dark energy)

- Survey of the scientific areas covered by these instruments
- Survey of the use of these instruments in those areas and how these compete/complement each other
- Time allocation
- Supporting observations
- Supporting data and model
- Calibration
- Data Archive

Paola Andreani

Obscured sources Cluster A1835

Paola Andreani

Source Identification

SCUBA beam

The case of HDF 850.1

Dunlop et al. (2002)

Downes et al. (1999)

Paola Andreani

<u>ALMA, APEX, Herschel</u> <u>in a snapshot</u>

Paola Andreani

<u>ALMA Main + Compact Array</u>

ATMOSPHERIC TRANSPARENCY + DETECTOR NOISE PERFORMANCE + TOTAL COLLECTING AREA:

Main (50 12m) antennas + ACA (4 <mark>1</mark>2m + 12 7m)

FOV 50-85" at 3mm (90GHz) 8.3-14" at 0.5mm (600GHz)

Resolution: 0.03-4" at 3mm 0.005-0.7" at 0.5mm

Sensitivity (50, 1h) @3mm and 0.5" resol (1km baseline) continuum 0.03mJy

The ACA System

line 3mJy

- Twelve (12) 7-meter diameter antennas (18 stations)

Four (4) 12-meter dig the eran Ones $(1000 \text{ M}^{\circ})^{\circ}/B(\text{km})$ ACA Correlator in AOS building $S = 2K/AETTERSTRESSES/FININ-1) \Delta vtint$

Paola Andreani

Band3: 84-116 Band4: 125-163 Band5: 163-211 Band6: 211-275 Band7: 275-373 Band8: 385-500 Band9: 602-702 Band10: 787-950 GHz

ALMA Receivers

	ALMA Band		Receiver noise temperature			Receiver	
		Frequency Range	T _{Rx} over 80% of the RF band	T _{Rx} at any RF frequency	Mixing scheme	technology	
	1	31.3 – 45 GHz	17 K	28 K	USB	HEMT	S
	2	67 – 90 GHz	30 K	50 K	LSB	HEMT	
	3	84 – 116 GHz	37 K	62 K	2SB	SIS	
	4	125 – 169 GHz	51 K	85 K	2SB	SIS	
⇒I	5	163 - 211 GHz	65 K	108 K	2SB	SIS	
	6	211 – 275 GHz	83 K	138 K	2SB	SIS	
	7	275 – 373 GHz*	147 K	221 K	2SB	SIS	
	8	385 – 500 GHz	98 K	147 K	DSB	SIS	
	9	602 – 720 GHz	175 K	263 K	DSB	SIS	
	10	787 – 950 GHz	230 K	345 K	DSB	SIS	

 \ast - between 370 – 373 GHz $T_{\rm rx}$ is less then 300 K

•Dual, linear polarization channels: •Increased sensitivity •Measurement of 4 Stokes parameters •183 GHz water vapour radiometer: •Used for atmospheric path length correction

★ Japanese contribution all telescopes plus ACA
 ★ EC funded 8 receivers ALMA-Herschel synergy

Paola Andreani

Atacama Pathfinder Experiment APEX

artemis

cooled at 300mK dichroic filter to split the frequency channels antireflection dielectric sheet

to improve absorption at 450/850µm

artemis

200-450μm 800-1200μm

LABOCA

 λ =870µm = 345GHz $\Delta\lambda$ =100µm = 322-364 GHz

FOV=11',4 Res=18"

No chopping

atmospheric contribution in the signals of the 295 bolometers correlated and removed with appropriate data reduction algorithms.

Neutron Transmutation Doped (NTD) semiconductor thermistors fabricated from Ge

<u>Herschel</u>

fourth cornerstone mission in ESA's Horizon 2000 programme Jaunch End 2003 3.5 m passively cooled 70 80 K 3 cold focal plan instruments photometry and spectroscopy in the 60 - 670 µm range liquid helium cryostat operational lifetime of at least 3 years

PHOTODETECTOR ARRAY CAMERA AND SPECTROMETER (PACS)

ALMA, APEX, Herschel synergies

<u>Imaging Photometry</u>

- Two bands simultaneously (60-90 μm or 90-130 μm and 130-210 μm) with dichroic beam splitter
- two filled bolometer arrays (32x16 and 64x32 pixels)
- point source detection limit ~ 3 mJy (5 σ , 1h)

Focal Plane Footprint

32 x 16 pixels 64 x 32 pixels 6.6"x 6.6" 3.3" x 3.3"

photometry

Integral Field Line Spectroscopy

– wavelength range 57-210 µm - optical image slicer rearranges 2-D field of view (5x5 pixels) along 1-D slit (1x25 pixels) – long-slit grating spectrograph (R ~ 1500) disperses light - dispersed slit image is projected on 16x25 pixel Ge:Ga **Photoconductor arrays** (stressed/unstressed) - 16 spectral channels recorded simultaneously for each spatial element - point source detection limit <u>2.5 – 8 x 10⁻¹⁸ W/m² (5 sigma, 1h)</u>

HIFI: heterodyne receiver

Single pixel receiver 480-1250 GHz 1414 - 1910 GHz FWHP beams 12-45" Very high spectral resolution (140-280 kHz-0.5/1MHz) quantum sensitivity limit Instantaneous IF bw 4GHz

Photometry with Herschel

		PACS			SPIRE	
λ_{cent}	75 <i>µ</i> m	110µm	170µm	250µm	350µm	500µm
<u>Δλ(</u> μm)	60-90	90-130	130-210	210-290	290-400	410-580
Sensitivity mJy,50,1h	3	3	3	1.1	1.2	1.5
FOV (arcmin)	1.8x3.5	1.8x3.5	1.8x3.5	4 ×8	4 x8	4 ×8
Angular res.	5"	8″	12"	17"	24″	35″

Spectroscopy with Herschel

	HIFI	PACS	SPIRE			
Spectral range	480-1250GHz (240-625μm) 1410-1910GHz(157-212μm)	1426-4997GHz (60-210 <i>µ</i> m)	447-1499 <i>G</i> Hz (200-670 <i>µ</i> m)			
Sp band	WBS: 4GHz HRS: 1/0.5GHz					
Spectral res	WBS(1MHz) 0.2-0.6km/s HRS(100/200kHz) 0.03- 0.06/0.13km/s R=2 10 ⁶ -10 ⁷	100-250 km/s R=1200-3000	300-15000km/s R=20-1000			
Flux limit	R=10 ³ 1.1-3.2 mK (0.5-1.5Jy) R=10 ⁶ 34-100 mK (15-46 Jy)	R=10 ³ 0.16-0.21 (0.11-0.14 Jy)	R=10 ³ 2.9-3.2 Jy PS 7.2-8.4Jy			
Line flux limit 10 ⁻¹⁸ W/m ²	0.9-7	7.8 (60 <i>µ</i> m) PS 2.5 (180 <i>µ</i> m)	38 (200-300µm) PS 35 (300-400µm) 35-70 (400-670µm)			
FOV	12", 48"	47"×47"	2.6'x2.6'			
HPBW	46-12"	9.4"	18", 25"			
Paola Andreani						

<u>Common scientific projects</u>

- Star formation
- Planetary system formation
- Nearby galaxies
- Galaxy formation
- AGN-Host joint formation/BH formation
- Dark energy constraints

<u>Standard model of star formation</u>

1. Formation of pre-stellar clumps in molecular clouds.

3. Protostar (infall and outflow coexists)

2. The pre-stellar clump collapses

4. Formation of a planetary system Fig. from McCaughrean

Paola Andreani

<u>Chemistry as a clock for YSOs</u>

Paola Andreani

Star formation

- <u>PACS+SPIRE+ARTEMIS</u>: grain properties, maps of star forming regions in continuum, mass spectrum for small masses (IMF) + OI 63 μm line maps on the large scale
- <u>HIFI</u>: molecules (mainly H₂O) + detailed kinematics of star forming regions
- <u>ALMA</u>: molecules at higher spatial resolution + outflows

High spatial res at SED max of most SF regions separate the main sources of luminosity

Star Formation at the Galactic Centre

0.0

SCUBA 450 micron

359.6

- HIGAL (HSO OT proposal) map the Galactic Centre in SPIRE
 (PACS) bands
- ALMA could map $1\square^2$ at 350GHz in 180 h to 0.7mJy sensitivity (0.15 M_{\odot} at 20K)
- 1" beam (8500AU) would give $\Delta T=0.6K$ at 1 km/s resolution
- Possible lines in 2x4GHz passband:

0.0

0.1

0.2

-0.3

- SiO 8-7, H¹³CO⁺ 4-3, H¹³CN 4-3, CO 3-2
 - CH₃CN, HCN 4-3, HCO⁺ 4-3 H¹³CN 4-3, CS 7-6, CO 3-2

Debris discs + planet formation

SED of dust discs in presence of different planetary configurations, 4 grain chemistry

2.5

2.5

2.5

2.5

same particle size distribution n(b)db=n₀b^{-q}, distance 50pc, total mass 10⁻¹⁰ M_o

Paola Andreani

dust emission from a face-on disc with a planet **ALMA 900GHz simulations**

Integration time 8 hours; 10 km baselines; 30 degrees phase noise

1.0

0.5

0.25

Detection of the warm dust in the vicinity of the planet only for distance 50-100pc

orbital radius 5 AU distance 50pc, total disc mass $10^{-2} M_{\odot}$

orbital radius 5 AU distance 100pc, total disc mass $10^{-2} M_{\odot}$

Dust and molecular emission from optically obscured regions HST optical image HST optical image + CO contours

(CO: Wilson et al. 2000) (HST: Whitmore et al. 1999)

ALMA, APEX, Herschel synergies

The "Antennae"

Paola Andreani

<u>Star formation in nearby galaxies</u>

Obscured galaxy formation at low redshift

(Meier & Turner 2004)

IC342

- distance = 2 Mpc
- $M_{gas} = 4 \ 10^7 \ M_{\odot}$
- SFR = 0.1 Mo/yr
- Starburst age = 10⁷ yrs

.CO + 3mm

Paola Andreani

Star formation in nearby galaxies

- SED from IR to mm: active nucleus + SF activity + metallicity
- ISM structure
- Heating and cooling

of the gas in different metallicity environment

Effect on SF
 from environments

 Templates for high-z studies

- Rich clusters: Virgo = 16 Mpc, Coma = 100 Mpc
- ULIRGs: Arp 220 = 75 Mpc, Mrk 273 = 160 Mpc

<u>Line diagnostics at low/high-z</u> is SF responsible for most of L_{FIR}?

- [OI]63 μ m + [CII]158 μ m 1-2% of L_{bol}
- Accurate SFR estimate + Metallicity
- Produced in PDR (not affected by AGN)
- · ([OI]+[CII])/FIR → obscured AGN contribution ([CII] weaker in ULIRGS)
- HCN (dense gas, MC core) is a measure of the mass of SF cores
- CO traces the total molecular mass + gas dynamics

The Cosmic Extragalactic Background

 $\int_{0.3\mu m} I(v) dv = 17 nW/m^2/sr$

Its origin revealed detecting those galaxies responsible for the 100-1000µm radiation

Paola Andreani

DEEP HERSCHEL SURVEYS: FIR (75 - 500 µm) 75 µm 110 µm 0 CENSUS OF THE 170 µm 250 µm SFUNIVERSE up to z=2-3 520 µm HST WFPC2 Hubble Deep Field

ST Scl OPO January 15, 1996 R. Williams and the HDF Team (ST Scl) and NASA

ALMA Deep field: 'normal' galaxies at high z

• Detect current submm gal in seconds!

ALMA deep survey:3days, 0.1 mJy (50), 4'

- HST: few 1000 Gal, most at z<1.5
- ALMA: few 100 Gal, most at z>1.5
- Parallel spectroscopic
 surveys, 100 and 200 GHz:
 CO/other lines in majority
 of sources
- Redshifts, dust, gas masses, plus high res. images of gas dynamics, star formation

Gravitational lensing by a cluster of galaxies

Surface density with steep/shallow counts N(S) increased/decreased by gravitational lensing magnification (µ): N'(S)=N(S/µ)/ μ^2

For N(S) \propto S^{α} bias factor B=N'/N = $\mu^{-(2+\alpha)} > 1$ if $\mu > 1$ source counts increase if $\alpha < -2$. If $\mu < 1 \alpha > -2$ positive magnification bias. Sources otherwise too faint can be detected and resolved. FOV increased Paola Andreani ALMA, APEX, Herschel synergies

Exploit ALMA to image the densely packed Gravi demagnified counterimages of background galaxies in the cluster core 1µJy 1 source/30 0.1" beam 10⁵ 10^{4} N(>S) [deg⁻²] 10^{3} SHADES Smail et al. (2002) Cowie, Barger & Kneib (2002) Chapman et al. (2002) Borys et al. (2003) Webb et al. (2003) Knudsen et al. (2006) Scott, Dunlop & Serjeant (2006) 10^{2} 10¹ Survey Limit 10^{0} 0.2 2 8 10 20 1 4 6 850µm Flux Density S [mJy]

Paola Andreani

We will detect at 75 µm and characterize all the star-forming galaxies making up the peak of the differential counts

Confusion noise <u>estimates</u>

Detection limits (poisson+clustering)

Blue: spirals Cyan: SB Violet: Radio sources **Red: SF spheroids** Green: clustered SF spheroids

Negrello et al., 2004

Paola Andreani

<u>Confusion is avoided with</u> <u>ALMA</u>

Current missions in black

- Spitzer is + $\$
- Green bar is just a 500m baseline ALMA
- Red bar is 10-m SAFIR
 - Confusion from galaxies not met for many minutes or hours
 - At shortest wavelengths very deep observations are possible
- Factor of 10 in resolution over existing facilities is very powerful

Confusion noise: square root of the variance $\sigma^2_N(S_d)$ of intensity fluctuations within the telescope beam **Detection limit:** $S_d = q \sigma_N(S_d)$ ALMA, APEX, Herschel synergies

ALMA as a redshift machine

Paola Andreani

CO Line SEDs

@ z~10 CO lines not detectable

Weiss, Walter, Downes, Henkel, in prep

ALMA into the Epoch of Reionization

ALMA J1148 24 hours

Studying 1st galaxies

- Detect 'normal' (eg. Ly α), star forming galaxies, like M51, at z>6, in few hours
- Determine redshifts directly from mm spectroscopy

ALMA, APEX, Herschel synergies

Spectral simulation of J1148+5251
Detect dust emission in 1s (5σ) @ 250 GHz

 Detect multiple lines, molecules per band => detailed astrochemistry

Image dust and gas at sub-kpc resolution – gas dynamics!

Paola Andreani

High Density Tracers: HCN & HCO+

...lines 5-10 fainter than CO lines...

Garcia Burillo ea

2006

Paola Andreani

[CII] (ionized carbon): major cooling line of the ISM ²P_{3/2}-²P_{1/2} fine-structure line -- PDR / SF tracer

Rest frequency: 1900 GHz (158 microns) -> z=0 observations from ground prohibitive

ISO observations: [CII] carries high fraction of L_{FIR} !

Low-metallicity dwarfs: ~1 %Starforming galaxies: ~0.5 %ULIRGS: ~0.05 %

Why? A) self-absorbed/optically thick [CII] B) saturation due to high UV flux C) others

[e.g., Stacey 91, Israel 96, Malhotra 97, Madden 97, Gerin 00 Luhmann 03]

ALMA, APEX, Herschel

-2dwarfs G1-Cl1358 -2.5adopted log L_[CII]/L_{FIR} -2⁻² from Maiolino J1148 0¥ 9 o ap.[CII] < 10kpc PSS2322 z < 0.1 • ap.[CII] > 10kpc -4 \times ULIRGs 4<z<5 ∎ et z=6.42 a 12 05 8 10 14 $\log L_{FIR} (L_{\odot})$

Paola Andreani

Finding z >> 2 galaxies

- Blind Herschel/APEX surveys trace heavily obscured star-forming galaxies up to z=2-3
- Optical/near-IR identification very difficult.
- ALMA images individual Herschel/APEX source, separates different galaxies in 1 beam
- ALMA will resolve and detect a galaxy at z=6 with L_{CO} = that of M51
- ALMA will provide redshifts for all obscured source with CO spectroscopy.
- But ALMA blind surveys needed to detect the highest-z ones!

Which is the physical process of BH growth?

Coevolution of SMBHs and galactic bulges

<u>Nearby Seyfert 1s</u>

NGC 7469 (66 Mpc)

Expected CO emission flux

Paola Andreani

CMB BB polarization modes in presence of DE

on arcminute angular scales. Paola Andreani

ALMA, APEX, Hers

Expected signals

polarization anisotropy spectrum EE and BB: polarization tensor components

on very small scales (1 ≥ 3000, i.e. ALMA) the lensed power spectrum is much larger than the unlensed

Paola Andreani

Polarization induced by CMB quadrupole

temperature quadrupole

(Baumann & Cooray, 2003)

The redshift evolution of the quadrupole has a rise at low z as the Universe becomes DE-dominated

CMB polarization due to galaxy clusters.

- CMB polarization towards clusters is generated when the incident radiation has nonzero quadrupole moment.
- The quadrupole has two components: the projection of the primordial CMB quadrupole to the cluster location and a local kinematic quadrupole from the cluster peculiar motion.

(Sazanov & Sunyaev, 1999)

Foregrounds: point sources + Galaxy

WMAP polarization map at 22.5GHz

- Contamination from point sources:
- compact flat spectrum radio sources
- submm? Arp220 (<1.54%) (Baccigalupi et al., 2001; Tucci et al., 2004; Seiffert et al., 2006)
- Galaxy:
- Dust emission polarized, increases with λ
- Overall polarization on average decreases wrt individual clouds
- Diffuse synchrothron emission dominant at v < 70 GHz.

<u>Conclusions for common</u> <u>projects</u>

- HSO/PACS + SPIRE + APEX/Artemis+LABOCA: suited to surveying large regions and SED in the FIR
- ALMA: high sensitivity, high ang. Resolution in spectral line and continuum and SED @ long- λ
- HSO+APEX extragalactic/Galactic survey driver
- ALMA follow up (z, size, physical conditions)
- ALMA HSO: complementary because of different frequency range and resolving power
- HSO/HIFI + ALMA: complementary in spectral line surveys and studies (i.e. H₂O)
 Paola Andreani

Synergies

Herschel / APEX

- bolometres suited to survey large regions of sky
- Take the lead in initiating projects
- PACS+SPIRE+LABOCA+. ARTEMIS: finding surveys
- HIFI: water vapour + other molecules not observable from ground

ALIVIA

- high sensitivity, high spatial resolution
 - Quick reactions to followup (redshifts, longer-λ SEDs)

Redshift machine + identification

 Complementary lines
 (3₁₃-2₂₀ H₂O transition @183GHz) and H₂O¹⁸ @203GHz) + high resolution

Supporting Observations and Data

- Lower angular resolution preparatory surveys (APEX+LABOCA, SCUBA2, LMT, APEX+Artemis, SCELT+ELT?, Spitzer) larger single dishes+large bolometer cameras: higher mapping speed+lower source confusion
- Single dishes very wideband spectroscopy up to 32GHz: spectra with multiple transitions: suitable for redshift.
- Molecular collision rates, radiative transfer algorithms, chemical reaction rates
- Completely automated form of data reductions (huge datacube) automated comparison with models ALMA, APEX, Herschel synergies

Calibration

- Accurate calibration: measurement and modeling programmes, including time variation
- Different limitations of ALMA and Herschel: PACS and SPIRE are quickly saturated and large bandwidths
- Less bright, smaller outer planets and asteroids
- HIFI+ALMA: common bands

small spectral line sources unresolved by ALMA but bright enough for HIFI (S/N small) Complete ALMA imaging of slightly extended calibration sources (large investment of time)

<u>Conclusions</u>

- Synergies between ALMA and other experiments: Herschel, APEX+LABOCA, SCUBA2, LMT, APEX+Artemis, SCELT+ELT?, JSWT
- Common scientific projects: competion vs complementarity
- Data model
- Preparatory observations (surveys) see workshop
- **Calibration** (steering committee)
- Data archive (VO compliant)