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Chapter 1

Introduction

Radio pulsars are rapidly rotating and highly magnetised neutron stars. The

emitted radiation is strongly beamed along the magnetic field axis and the

misalignment between the spin axis and the radiation beams is responsible of

the pulsating behaviour of the observed signal. In other words they behave

like cosmic radio lighthouses and the observed period between two consecutive

pulses is the time required for a complete rotation (§ 3.1). The size of about

20 km in diameter, the high mass of 1 to 2 solar masses and the short rotation

periods from about 1.5 millisecond up to about 10 seconds allow pulsars to

behave like flywheels, and this in turn provides a very high degree of stability

for their rotation.

The very high stability for their rotation allows to predict the time between

two consecutive pulses with a so high precision that the rotational phase can be

measured with many significant digits for a relatively long time in the future,

provided a given pulsar has already been observed for enough time. Such an

high precision allows pulsars to be used as tools to address various physical and

astrophysical issues in fields like nuclear physics (e.g. Stergioulas & Friedman

1995; Burderi & D’Amico 1997), late stages of star evolutions (e.g. Phinney &

Kulkarni 1994), stellar population studies (Lorimer 2001) and investigation of

the interstellar medium (e.g.Rickett 1981).

The accuracy in predicting the times of arrival of future pulses is maximized

for the class of the so-called recycled pulsars (Alpar et al. 1982). They are old

neutron stars spun up to very fast spin rates by the transfer of mass from a

companion star in a binary system (Bhattacharya & van den Heuvel 1991; § 3.6,

§ 3.7). Most of these pulsars show an higher degree of stability, over periods of
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months to years, than the best terrestrial atomic clocks. When they are located

in an environment, e.g. binary systems and globular clusters, they can be

used as high precision tools for studying the physical environment. They have

been used for studies about gravitational theories (e.g.Damour & Taylor 1992),

about globular cluster dynamics (e.g. Phinney 1993), about galactic dynamics

and cosmology (e.g.Hellings & Downs 1983, Cordes et al. 2004) (Chap. 4).

In this Thesis results are reported from many years of observations of

some recycled pulsars, sometimes also known as millisecond pulsars because

of their short rotation periods down to few milliseconds, of particular interests.

These millisecond pulsars have been discovered during the observations of the

Parkes Southern Pulsar Survey (PSPS) and the ParKeS Globular Cluster survey

(PKSGC).

The Parkes Southern Pulsar Survey (Manchester et al. 2001) is a project

developed in collaboration with the pulsar groups located at the University

and at the Astronomical Observatory of Cagliari (Italy), at the Jodrell Bank

Observatory near Manchester (United Kingdom), at the Australia Telescope

National Facility in Sydney (Australia), at the McGill University (Canada) and

at the Columbia University (USA). The survey started in 1997 and it has been

recently completed. It allowed the discovery of about 800 pulsars (Morris et al.

2002, Kramer et al. 2003, Hobbs et al. 2004, Faulkner et al. 2004), which is

about the number of pulsars already known before this project began. In other

words, this survey allowed to double the number of known pulsars. The Parkes

Globular Cluster Pulsar Search began in 1999, and is still in progress. Insofar,

it has led to the discovery of 12 pulsars in 6 globular clusters (D’Amico et al.

2001; D’Amico et al. 2001b), for which no associated pulsars where previously

known, triggering a new golden age in the search for millisecond pulsars in these

peculiar stellar environments (Ransom et al. 2005; Freire et al. 2005).

The word timing indicates the peculiar analysis that can be performed on

sources that emit a periodic pulsating signal. In particular in the case of the

radio pulsars, it consists in the detection of pulses (§ 4.1), the determination

of pulses’ times of arrival (§ 4.5) and their fit to the appropriate physical

model for the pulsar under investigation (§ 4.7). Any model depends on

a set of parameters, whose values can be measured as part of the fitting

procedure. In general, the parameters entering a model can be divided in
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three groups: rotational parameters, astrometric plus kinematic parameters and

binary parameters (when applicable). The rotational parameters are basically

the spin period and its derivatives. The astrometric parameters are the position,

the dispersion measure and the proper motion (e.g. Manchester & Taylor 1974).

The binary parameters can be further divided in two groups: the classical

parameters (the Keplerian ones, e.g. Blandford & Teukolsky 1976) and the post

Keplerian parameters (Damour & Deruelle 1986).

In this Thesis timing procedures have been applied to the recycled pulsars

located in the globular clusters NGC6266 (M82), NGC6752 and in the binary

system J1811−1736, the latter belonging to the galactic disk. The following

sections summarize the main astrophysical questions addressed in the study of

each object.

1.1 NGC 6266

NGC6266 (M82) is known to host six millisecond pulsars, all members of

binary systems. The spin period derivative show negative values for the three

pulsars (PSRJ1701−3006A/B/C) timed in this work (§ 5.5). The intrinsic

value for this quantity must be positive, in accordance with the fact that

every pulsar undergoes a spin down; so these negative values can be ascribed

at the component along the line of sight of the acceleration imparted to the

pulsars in their motion in the gravitational field where they are located. It

can be easily verified that the contribute provided by the globular cluster is

dominant on all other galactic contributes. Hence the measured values for

the spin period derivative have been used to estimate a lower limit to the

mass-to-light ratio in the central regions of the cluster and to compare it to

the value derived from observation in the optical band (§ 5.5). This in turn

allowed to collect informations about the nature of the stars (compact remnant

and/or unevolved low mass stars) located in the central region of the cluster.

One of the three timed pulsars, PSRJ1701−3006B, is an eclipsing pulsar with

a peculiar behaviour (§ 5.7). The analysis of its timing residuals at orbital

phases around the eclipse has been used to investigate the binary evolution of

PSRJ1701−3006B and its companion. It has been also addressed the issue of

the unusual lacking of isolated pulsars in this cluster (§ 5.4).
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1.2 NGC 6752

NGC6752 is known to host five millisecond pulsars. One of them is member

of a binary system, while the other four are isolated. All of them display

peculiarities among the population of the recycled pulsars hosted in globular

cluster, nowadays counting about one hundred objects. Two pulsars are located

in the cluster core, PSRJ1910−5959B and PSRJ1910−5959E, and show very

large negative values for their spin period derivative. As for the situation

discussed for NGC6266, this implies a dominant contribution to this quantity

due to the cluster potential well. The third central pulsar, PSRJ1910−5959D,

shows a spin period derivative whose value is positive, but of the same order

of magnitude of the values for the other two central pulsars. Consequently,

also for this object the spin period derivative is probably dominated by the

acceleration experienced by the pulsar. The large measured values of the spin

period derivative for the three central pulsars indicate a very high mass to

light ratio in the cluster’s core, significantly larger than that derived from

observations in the optical band. This in turn implies a high concentration of

low luminosity stars in the cluster’s core, in the form of massive white dwarfs,

neutron stars or possibly black holes.

The other two pulsars in the cluster, PSRJ1910−5958A and

PSRJ1911−6000C, are located at very unusual projected positions, since their

location is much farther from the cluster centre than the extension of the

core radius of the cluster, and one of these two pulsars is even located in

the very outskirts of the cluster itself. These positions are unexpected since

mass segregation occurs in globular clusters, imposing to the heaviest stars,

like neutron stars, to drift into the central regions and leaving the lightest

in more peripheral mean positions. This consideration led to propose that

the position of PSRJ1910−5958A and PSRJ1911−6000C are due to their

ejection from the cluster’s core, in dynamical encounters with a central propeller

(D’Amico et al. 2002). One model describes this propeller as a single massive

black hole of some hundreds of solar masses (Colpi et al. 2003), while another

model invokes a binary system formed by two black holes of intermediate mass:

about 10 and 50 solar masses (Colpi et al. 2003). In order to test the highly

intriguing possibility that one or two black hole(s) indeed exist in this cluster
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it is important to exclude the possibility that these two pulsars are galactic

objects (§ 6.7) whose projected positions are by chance superimposed to the

globular cluster. Binary parameters have been improved for PSRJ1910−5958A

(§ 6.6) and proper motion measurements have been determined for both the

two outermost pulsars (S 6.7), which helps in putting further constraints on

this issue.

1.3 PSRJ1811−1736

The binary pulsar PSRJ1811−1736 is a mildly recycled pulsar with a massive

companion, discovered in the early phases of the PSPS (Lyne et al. 2000a). The

available data have been obtained using three different radio telescopes (§ 7.1,

§ 7.2), along a five years data span for significantly improving the determination

of the relativistic post Keplerian parameter known as advance of the periastron.

Assuming that general Relativity is the correct theory for gravity and that

non relativistic effects are negligible, the measurement of this parameter allows

a direct determination of the total mass of the system. The obtained value

strongly supports the hypothesis that this is a binary system whose members

are both neutron stars (§ 7.3).

Among the eight known objects belonging to the class of double neutron

stars binary systems, PSRJ1811−1736 has the longest spin period and its orbit

displays the highest orbital period, separation and eccentricity. This makes this

binary a key system in investigating (§ 7.5) the correlation between the pulsar

spin period and the orbital eccentricity that has been recently noted for double

neutron star binary systems (McLaughlin et al. 2005; Faulkner et al. 2005).

Since this correlation has been recovered via a population syntesis (Dewi et al.

2005), assuming that the second formed neutron star receives a low velocity kick

in the supernova explosion that formed it, it has been derived the probability

distribution for the kick received by the comapnion of PSRJ1811−1736 (§ 7.4),

and results have been used to compare the evolution of this large system to that

of all closer double neutron star binaries.
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Chapter 2

History of pulsar astronomy

2.1 The beginnings

Pulsar astronomy is a quite young branch of science, as its beginnings are

dated in the late Sixties. In July 1967 a young PhD student, Miss Jocelyn

Bell, now Dr. J. Bell-Burnell, started her work, under the supervision of Prof.

Antony Hewish from Cambridge university, on observations of interplanetary

scintillation. The telescope was basically a transit telescope designed as a

dipoles’ array tuned on a wavelength of 3.7 meters, and the signals were

recorded with a short sampling time. The aim of these observations was to

detect extrasolar point sources, like quasars, as their signals are enhanced by

interplanetary scintillation.

A strange fluctuation, at first sight classified as an interference, was

detected on August 6th, and on some of the following days at the same time.

This fluctuation reappeared again in September, and it was also noticed that it

was observed at the same sidereal time.

Hewish & C. soon realised that something new were coming on. In October

it was decided to further decrease the sampling time and, on November 28th, the

key feature of that mysterious signal could be revealed: it was an 1.337 seconds

extremely regular pulsating signal. Such a signal had never been detected before

and some questions arose. Could that signal be effectively made by humans?

Could it be produced by a passing-by spacecraft? Could it be the evidence of

an extra-terrestrial civilisation?

The latter hypothesis were so disturbing, that a lot of effort was spent on the

analysis of that signal without any communication to the scientific community
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till February 1968, as the letter on the journal Nature (Hewish et al. 1968) was

published.

2.2 Towards the pulsar model

The announcement by Hewish et al. (1968) of the first pulsating source had

a big impact on the scientific community, and not only on it. A lot of not-

exactly scientists asked for the collected data, more likely fascinated by the

hypothesis that it could have been received for the very first time a signal

from an extraterrestrial civilisation. It is worth to mention that it has been a

journalist the person that thought about the name PULSAR as the abbreviation

for PULsating Source of Radiation.

Leaving a part believers in little green men, the Nature letter stimulated

a lot of theoretical work to describe the object responsible for the observed

pulsating signal. It is to note that the solution to this problem had already been

proposed before the discovery by Hewish et al. (1968). In the attempt to justify

the still persistent luminosity of the Crab nebula, the remnant of the historical

supernova exploded in A.D. 1054 and recorded by Chinese astronomers in their

annals, Franco Pacini (Pacini 1967) proposed the existence of a rapidly rotating

and highly magnetised neutron star, located in the central regions of the nebula.

The energy for the radiation emitted from the nebula, in this model, is supplied

by the stimulation of the nebula particles by the induced electric field generated

by the rotating magnetic field. It now seems that this work remained ignored

by Hewish, but particularly by Gold who proposed (Gold 1968), as the model

for these sources, exactly the same scenario invoked by Pacini, as it might be

deduced from the absence of any reference to Pacini’s paper. Curiously, when

Gold published its paper, Pacini was working in the same institute (Cornell

University) as a visitor... and only few rooms apart! A collaboration had

immediately established, and the two scientists could share the credit to have

found the correct model and the observational prediction.

How has the correct model been reached? The short periodicity of only

1.3 s, for the first discovered pulsar, suggested that the emitting region had

to be of small size and its high regularity brought to the conclusion that the

emission had to involve a whole object instead of only a part of it. These
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simple arguments lead to invoke compact objects like white dwarfs and neutron

stars. Because the latter were still considered exotic objects, most astronomers,

Hewish himself included, spent their efforts towards white dwarfs, instead of

attempting the jackpot of a new class of objects. Three basic mechanisms were

proposed: a rotating object, an oscillating object, a planet/satellite orbiting

around the compact object.

The planetary model has been the first discarded model. A few seconds

orbit around a white dwarf is a surface grazing orbit. The satellite would be

subjected to high surface temperatures and tidal forces produced by the star’s

atmosphere, that would easily disrupt it. Such an orbit around a neutron star

has a different problem. The binary system would be a very efficient generator

of gravitational waves that causes the orbit decay in a very short time, unless the

satellite is of negligible mass compared to the neutron star. If this condition were

met, the orbiting object would be subjected to so extreme tidal forces, caused

by the high intensity of the gravitational filed, that it would be disrupted in a

very short timescale.

The oscillating model has been discarded via observational evidences. A

white dwarf can oscillate with periods P ∼ 2 ÷ 10 s, the exact value depending

on the equation of state and of the degree of elasticity of the star. All efforts

to model oscillation periods lower than 1 s resulted unsuccessful. A neutron

star can oscillate with periods P = 1 ÷ 10ms, i.e. three orders of magnitude

lower than the white dwarfs. Efforts were spent to build neutron stars that

could oscillate with periods longer than 10ms, but also these efforts resulted

unsuccessful. Consequently an oscillating pulsar could have periods either in the

1÷10 s range if it is a white dwarf, in the 1÷10ms range if it is a neutron star,

but not in the 10ms÷1 s range. The discovery of the Vela pulsar (P = 89ms,

Large et al. 1968) and of the Crab pulsar (P = 33ms, Staelin & Reifenstein

1968) brought to discard the oscillation models.

Only one model was remained: the rotating object. The discovery of the

Vela and Crab pulsar also allowed to identify pulsars with neutron stars and

discard the rotating white dwarf picture, being the latter unable to rotate at

periods shorter than about one second. It was also noted that a rotating object

would be expected to slow down, being the emitted radiation supplied by the

rotation kinetic energy. Soon after its discovery, the Crab pulsar showed a

8



regular increase in its spin period, confirming this last theoretical prediction.

2.3 PSRB1913+16: the first binary pulsar

In the middle Seventies a new discovery turned on the lights on pulsar astronomy

again. In 1975 Hulse & Taylor (1975) discovered PSRB1913+16, which showed

a 73
4
hrs periodic variation of the pulses’ period around a central value of 59ms.

This unprecedentedly observed variation of a pulsar period had been interpreted

as the signature of an orbital motion around a companion star, and the time

scale of 73
4
hrs was identified with the orbital period. The conclusion was that

pulsars could also exist in binary systems.

It had been also recognised that the pulsating behaviour of the received

signal could be used to obtain informations on the binary parameters (see

§ 4.7 for technical details). The evaluation of the mass function pointed out

that the companion had to be a quite massive star, but the projected orbital

semi-major axis was too small to allow PSRB1913+16 to orbit around a main

sequence or horizontal branch star: the companion seemed more likely to be a

compact object. A deeper insight on Keplerian parameters also indicate that

the binary system was close enough and massive enough that deviations from

a Keplerian orbit had to be huge, compared to what measured in the solar

system, and maybe measurable. It didn’t take too long to observe and measure

the periastron advance, as predicted by Einstein’s general relativity. It’s value

of about 4 degrees per year was indeed very high, if compared to the highest

previously measured, namely ω̇ ∼ 4 arcsec/century for Mercury’s orbit around

the Sun.

A parameter like the periastron advance ω̇ is called a post-Keplerian

parameter and its basic property is that it depends only on the Keplerian

parameters and the masses of the two objects. In particular, the periastron

advance depends on the masses of the two orbiting bodies through their sum.

Moreover, jointly using with it the value for the mass function, a firmer lower

limit on the companion mass was obtained and the hypothesis of a massive

companion resulted reinforced.

In this system other two post-Keplerian parameters were later measured.

Several gravitation theories predict a decrease of the size of an orbit, know as
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the orbital decay. The validity of Kepler’s third law ensures that this effect can

be revealed not only directly, measuring variations of the orbital separation, but

also indirectly measuring variations of the orbital period. The measured value

for the orbital period’s first derivative, ṖB, had a devastating consequence: the

only theory that could predict with satisfactory agreement the measured value

was Einstein’s general relativity and, in particular, the quadrupole emission of

gravitational waves. For the first time it was being claimed that gravitational

waves could really exist.

Being measurements available for two post-Keplerian parameters, the

pulsar’s and companion’s masses could be determined separately. The

companion mass resulted similar to the pulsar’s one and this lead to identify it

as another neutron star. Binary systems like this one were consequently named

double neutron stars systems (DNS).

The third measured post-Keplerian parameter has been the γ parameter,

which measures the combined effect of the Döppler shift caused by the motion

of the emitting object and the gravitational redshift caused by the companion.

Being already available two other post-Keplerian parameters and resulting the

system completely solved, the measure of γ could be seen as an additional

measure of a totally known binary system. But a question of much more

general interest was still unanswered: is Einstein’s general relativity the

correct theory of gravitation? This question was still unanswered because all

previous observations provided results consistent with it, but none of them was

constraining enough to be used as a test. The case of PSRB1913+16 was

different and it was realised that if two post-Keplerian parameters were enough

to solve the system, the third could act as the TEST!

The principle of this test is simple. Each post-Keplerian parameter can be

seen as an algebraic relation between the masses of the two orbiting objects,

once the Keplerian parameters have been measured. These relations are curves

in the plane whose coordinates are the pulsar mass and the companion mass. If

two post-Keplerian parameters are known, the corresponding curves will cross

in a point of the plane which represents the masses of the two objects predicted

by the assumed theory. The knowledge of a third parameter allows to draw a

third line in the companion mass versus pulsar mass plane: this further line

will cross the two other curves in their common point only if the assumed
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theory is correct. The test has been done and the three curves had, within

their uncertainties, a common crossing point. The first really serious test on

Einstein’s general relativity has been so successful that Hulse and Taylor were

awarded in 1993 with the Nobel prize for the discovery of this system.

2.4 PSRB1937+21: the first millisecond pulsar

Also the Eighties can witness a basic discovery in pulsar astronomy, but this

time a lot of troubles were behind the corner.

In 1982 Backer et al. (1982) announced the discovery of the isolated pulsar

PSRB1937+21, claimed as the discovery of the fastest by far pulsar ever known,

as its period was only 1.53ms. Being its period of order of one millisecond, this

pulsar was renamed as the millisecond pulsar. Although it was already known

that a neutron star can rotate with spin periods as short as half millisecond, at

least theoretically, from the evolutionary point of view this pulsar was rotating

too fast. Theoreticians where in a big trouble and, being this not enough, from

the measurement of the first derivative of the spin period it has been inferred

for the surface magnetic field the value B0 = 4 × 108 G.

The discovery of a new class of celestial objects stimulates a lot of theoretic

works, and one among the most obvious is about the formation and the basic

properties. And this happened for pulsars too. Detailed studies on pulsars’

early stages of their life showed that they can be formed with surface magnetic

fields B0 = 1010 ÷ 1012 G, and even if they have at birth spin periods of order

of one millisecond, the energy loss is so huge that they spin down to periods

P ≥ 10 ÷ 15ms in a time scale of few days. This implies that spin periods of

order of one millisecond could be observed just after the supernova explosion

that originates the neutron star itself. All new pulsars already discovered

showed properties perfectly compatible with the predicted periods and magnetic

fields at birth. PSRB1937+21 parameters, on the contrary, were totally out

of range. Two ways were available to theoreticians to solve the problem of

the millisecond pulsar. The first way called for a completely different kind of

supernova explosion. The second way called for the role of accretion.

It wasn’t really difficult to solve this problem, as galactic compact X-ray

sources, in particular X-ray binary pulsars, were already known. In these
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sources the X-ray radiation is produced via accretion onto a compact object

and the accreted matter is provided by a binary companion. In addition, X-ray

pulsars were modelled as accreting neutron stars and also for them the pulsating

behaviour had been attributed to the rotation. It was also known that the period

of X-ray pulsars decrease because of the gain of angular momentum brought to

the compact object by the accreted matter. These neutron stars are accelerating

their rotation, i.e. they are spinning up.

It didn’t take too long to investigate if in such systems a neutron star could

be spun up to spin periods of about one millisecond and, of course, the observed

period for PSRB1937+21 resulted satisfactorily explained. Two questions

remained unanswered. This model didn’t explicitly predict the magnetic field

value: a problem that is still open. Anyway it immediately seemed reasonable

that because of the accreted matter the depletion of the magnetic field could

occur somehow during this phase. The second unanswered question raised

because although PSRB1937+21 had to be member of a binary system to

be accelerated up to the observed spin frequency, it is actually an isolated

millisecond pulsar. Also the problem of the isolated millisecond pulsars in the

galactic plane is nowadays not completely solved. In the case of this object, it

is believed that being the residual companion a light white dwarf, it has been

blown away by the strong particles’ winds from the pulsar emitting beams.

Millisecond pulsars like PSRB1937+21 are also named recycled pulsars and

the proposed model to explain their formation is named the pulsar recycling

model. The reason for this terminology is simple. In its binary life the neutron

star, anyway not necessary active as a Crab-like pulsar just after its formation,

has enough time to live as a pulsar and to be switched off because of the too

slow rotation, before the companion starts to transfer matter and activate (or

reactivate) the neutron star as a pulsar. This really is the recycle of a celestial

object.

So pulsars can be divided in three main classes:

i) Pulsars like the Crab and Vela pulsars, whose age is τ ≤ 105 yrs, which

are also named young pulsars;

ii) Ordinary pulsars, i.e. pulsars which are still active since their formation

as neutron stars but are older than 105 yrs;
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iii) Pulsars like PSRB1937+21 which are recycled pulsars.

2.5 PSRB1821−24: the first pulsar in a globular cluster

In the following years more and more pulsars were discovered. Surveys were

performed on the galactic plane, because it is the main structure of the Galaxy

and hosts the majority of the stars, but not all. Other structures are present

in a galaxy and they are incredibly rich of stars if compared to their size:

the globular clusters. The search of millisecond pulsars in these structure was

justified by the age of these stellar associations, comparable to that of the whole

galaxy: their age ensures that massive stars were formed in a far enough past

to have already ended their life and to have left their end products. Moreover

globular clusters can be entirely observed in a single pointing, and this made

this search much less telescope’s time consuming than any galactic search.

In 1987 PSRB1821−24 in the globular cluster M28 was discovered by Lyne

et al. (1987), soon followed by other discoveries in other clusters. Once the

first pulsar in a cluster is detected, the search for other pulsars in the same

stellar association is very easy for two reasons. One reason is that it does not

require a new pointing, but just a reprocessing of the already taken raw data.

The other is that this further search does not need to span over several values

for the dispersion measure, already determined by the detection of the first

pulsar discovered. In this way 22 pulsars have been discovered in 47Tucanae

(Manchester et al. 1990, 1991; Robinson et al. 1995; Camilo et al. 2000) and 24

in Terzan 5 (Lyne et al. 1990; Lyne et al. 2000b; Ransom et al. 2005).

The presence of more than one pulsar in a globular cluster allowed

new investigations on these structures, as pulsars could be used as reference

clocks subjected to the effects of the environment where they are placed. As

an example Freire et al. (2001) compared dynamical data to the dispersion

measures for 15 pulsars in 47Tucanae. Their analysis lead to the conclusion

that a non negligible amount of intracluster gas has to permeate the cluster

itself.
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2.6 The present: PSR J0737−3039

PSRB1913+16, the first discovered binary pulsar, identifies the binary system

that for long time remained indicated as the most relativistic, because such

effects were bigger there than in any other known stellar system. Moreover, the

time required to obtain measurements of the observable related parameters was

considered relatively short: ∼ 13 months to measure the periastron advance

with an accuracy of ∼1% (Taylor et al. 1976) and only about seven years to

measure the orbital decay at a 10% level. By the way the new millennium began

with another amazing discovery in pulsar astronomy.

In 2003 a new binary pulsar, PSRJ0737−3039, has been discovered by

Burgay et al. (2003) and it immediately revealed itself as an extraordinary

system. Being its orbital period of only 2.4 hours, it has been inferred an

orbital separation much lower than in any other system. All orbital parameters

immediately indicated that this pulsar is member of a newly discovered double

neutron star binary system. General relativistic effects were expected to be

huger in this system than in PSRB1913+16 one, and this prevision had been

sustained by the estimate of geodetic precession period and the merging time

scale. The former resulted of only 100 yrs, i.e. three times shorter than for

PSRB1913+16 (about 300 yrs).

The obtained merging time of only 85Myrs implied that a detection of

gravitational waves originated by such mergers could occur at a rate greater by

a factor of ten with respect to previous estimates, providing a strong justification

to all efforts spent to build gravitational waves detectors.

After only one week of follow up observations it has been necessary to

include in the timing model the periastron advance, whose measured value

resulted ω̇ ∼ 17±4 deg yr−1, to obtain an acceptable fit to pulses’ times of

arrival. For the first time the discovery paper of a binary pulsar contained

the measure of a post-Keplerian parameter.

The binary system containing PSRJ0737−3039 was immediately

recognised as the most relativistic binary system, and this brought a lot of

enthusiasm to the discoverers of this system... but no one could even imagine

what came out in the autumn of the same year. The best was yet to come.

While the discovery paper was under the revision of the referee, Lyne
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et al. (2004) detected a second pulsar in one observation of PSRJ0737−3039.

Although the probability to find two galactic pulsars in the same pointing is very

low, nothing excludes a priori this possibility so this fact alone didn’t appear

strange. What resulted strange were some measured parameters. This pulsar,

having a spin period of 2.8 s, was classified as an ordinary pulsar. Its dispersion

measure was compatible with the value for PSRJ0737−3039, indicating that

the distances of the two pulsars could be very similar. This pulsar was also in a

binary system, and the orbital parameters were compatible with the values for

PSRJ0737−3039. The only possible explanation for all this evidences was that

this newly discovered pulsar was the binary companion of PSRJ0737−3039.

The first double pulsar system was finally found. The consequences of this

discovery were unimaginable only few months before.

For all double neutron star system like PSRB1913+16 the companion

has been inferred to be a neutron star. The grounding evidences for this

conclusions have been parameters for the pulsar to be typical of recycled

pulsars, the measured or estimated mass for the companion to be of order of

one solar mass, a non negligible orbital eccentricity induced by the mass loss

undergone by the system in the second supernova explosion and an eventual

non detection of the companion in an optical observation of the system. In

the case of PSRJ0737−3039A/B (hereafter 0737A and 0737B), where now the

letters A and B indicate the two pulsars in the order they were discovered, the

classification of the two object as neutron stars is simply a consequence of their

being pulsars.

The presence of two pulsars in the same binary system allows the measure

of both mass functions, and their ratio provides directly the ratio between the

masses of the two objects. Consequently in this system the masses of the two

pulsars have been obtained using only one post-Keplerian parameter. The mass

ratio of the system is indeed independent from any theory of gravitation and it

can be used to do a much firmer test on gravitation theories. In the two years

since the discovery of this system, all five post-Keplerian parameters have been

measured and, consequently five curves plus the sixth bonus line, the mass ratio,

have been drawn with their uncertainties in the 0737B mass versus 0737A mass

plane, displaying a common area of overlap.

0737A undergoes eclipses, that last about 30 s, during its orbital motion,
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but a neutron star is not able to eclipse its companion for such a long

time. The orbital inclination respect to the line of sight resulted close to 90

degrees, but even in this geometry a neutron star is still too small. The only

possible explanation for the observed eclipses were that 0737A is eclipsed by the

magnetosphere of its companion. This means that interactions occur between

the magnetosphere of the two pulsars and maybe signatures of such interactions

are present in the detected signals. These features in the signal could be helpful

to solve the most important open problem in pulsar astronomy: the emission

mechanism.

2.7 The future of pulsar astronomy

After this brief review of the milestones in pulsar astronomy it is worth to

discuss what astronomers aim to discover in the future.

PSRJ1937+21 has been for a long time the pulsar with the shortest spin

period. Anyway the theoretical lower limit is still far away. A very simple

argument indicates in about half millisecond the shortest possible spin period

for a neutron star. The exact value for this lower limit depends on the assumed

equation of state. The discovery of a sub-millisecond pulsar would consequently

allow to discard all equations of state that do not predict the observed value.

The double pulsar is actually the most relativistic binary system ever

observed, and it is an amazing laboratory for fundamental physics. It is

expected to measure, within few years, second order gravitational effects, in

particular the second order periastron advance. This parameter is directly

related to the moment of inertia of the orbiting objects, which in turn gives a

measure for the radius of the neutron star. Once this measure will be available,

it will be the first time that both the mass and the radius of a neutron star

will be known. Because all equations of state indicate a well defined relation

between these two quantities, this measure will allow to discard all equations

that again do not agree with the measure.

A binary system whose members are a black hole and a pulsar would provide

an even more powerful laboratory for fundamental physics than the double

pulsar itself. It would allow to investigate the gravitational field in the ultra

strong regime, providing new tests on gravitation theories.
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Chapter 3

Pulsars

3.1 The basic model for pulsars

A very short definition is more than enough to describe what pulsars are:

pulsars are rapidly rotating and highly magnetised neutron stars, anisotropically

emitting radio waves with a radiation pattern which is not symmetric about the

spin axis. Is it worth to see all the steps that brought to the formulation of

this picture. Two main questions have to be answered: which class of objects

is able to emit a periodic signal with the observed values, and how is effectively

generated a pulsating signal.

The source of a signal variable on a timescale ∆t must have a characteristic

length scale ∆l <∼ c∆t, as can be justified with arguments involving radiation

coherence. The high degree of stability in the measured pulses’ period led to

suppose that the mechanism responsible had to involve an entire celestial object

rather than a fraction of a bigger star. The period of the first detected pulsar,

PSRB1919+21 (Hewish et al. 1968), is P = 1.337 s and implies a maximum

size ∆l<∼4 × 105 km, which is a too small size for all but late spectral type

main sequence stars. The detection of the Vela pulsar (P = 89ms, Large et al.

1968) and especially of the Crab pulsar (P = 33ms, Staelin & Reifenstein

1968) imposed an even shorter length scale. Their periods imply characteristic

lengths ∆l <∼ 2.6×104 km and ∆l <∼ 104 km respectively, and the conclusion that

pulsars are compact objects like white dwarfs or neutron stars could not be

avoided any more, since it is required for these objects to be smaller than the

above mentioned limits. This answer has indeed some possible caveats which

were overcome only after the basic principles of the emission mechanism were
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understood.

Three basic pictures have been considered to explain how a compact object

can produce a pulsating signal: rotation, oscillation, satellite or planet orbiting

around the compact object.

The planetary model has to be discarded because of theoretical

considerations. Using Kepler’s third law, r = (GMPP 2
B/4π2), it is possible

to estimate the radius r of the orbit of a satellite around a compact object of

1.4M�. In the case of a white dwarf, a 10 s circular orbit would have a radius

r = 7.8 × 103 km, a value very similar to the typical radius of a white dwarf.

This means that such orbit would be a surface grazing orbit, and the satellite,

being subjected to the very high surface temperature and the strong tidal forces

provided by the atmosphere of the central object, would be disrupted in a very

short time. Moreover, orbital periods sensibly lower than 10 s are not allowed,

because such orbits would be located well inside the white dwarf.

Orbital periods of order and smaller than 1 s are possible around a neutron

star, whose typical radius is r = 10 km. A 1ms circular orbit around a neutron

star would have a radius r ∼ 170 km, undoubtely larger than the tipical size

of the star. For such close binary systems general relativity predicts a very fast

decay of their orbits, since they are able to produce very efficiently gravitational

waves. Such emission produces a secular decrease of the orbital period, and

hence a decrease of the orbital separation for the system, leading to the merging

of the two orbiting objects. This phenomenon is known with the name of orbital

decay. The evolution of a binary system due to the emission of gravitational

waves is given in general relativity by the following expression:

ṖB = −KP
−5/3
B (3.1)

which expresses the evolution with time of the orbital period. The constant

K is function of the orbital period PB, the orbital eccentricity, the neutron star’s

mass MNS and the ratio ε = Msat/MNS between the satellite’s and neutron star’s

mass. Under the hypothesis of circular orbits the analitic expression for K is

given by:

K =
192

5

(

2πGMNS

c3

)5/3 ε

(1 + ε)1/3
' 1, 17 × 10−6

(

MNS

M�

)5/3

s5/3 (3.2)
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where the third side in eq. 3.1 holds in the case that the satellite mass

Msat is significantly lower than MNS. A simple integration of eq. 3.1 allows to

determine the merging time τm for a binary system:

τ =
3P

8/3
0

8K
= 3.2 × 105

(

P0

1 s

)8/3
(

MNS

M�

)−5/3

ε−1 s (3.3)

where P0 is the starting orbital period. Eq. 3.3 clearly states that for an

orbital period P0 = 1 s, the satellite’s mass Msat has to be several orders of

magnitude smaller that the neutron star mass for the system to avoid the orbital

decay within short times. Moreover, such a light satellite would be exposed to

huge tidal forces, because of the high intensity of the gravitational field so close

to the neutron star, and it would be again disrupted within a very short time.

This kind of considerations led to the exclusion of the planetary model for

pulsars.

The oscillating model has to be discarded because of the observed values

for pulsars’ periods. The theoretically minimum value for the oscillation period

of a white dwarf is Pmin ∼ 2 s (Cohen et al. 1969), the exact value depending on

the density and on the degree of elasticity of the star. This limit is quite strict:

oscillation periods P<∼2 s are forbidden for a white dwarf. Melzer & Thorne

(1966) studied in detail the oscillation modes for a neutron star, and found that

for realistic equations of state all possible values for the oscillation period lie in

the range 1ms <∼P <∼ 10ms, depending again on the adopted equation of state.

And again the limits are strict: it’s not possible for a neutron star to oscillate

with periods P > 10ms. A significant feature for an oscillating star is that

the period decreases with time as the oscillation is dumped. Consequently if

a pulsar is an oscillating object, its period has to be greather than ∼ 2 s if it

is a white dwarf, or in the range 1ms <∼ P <∼ 10ms if it is a neutron star. In

both cases pulsar periods have to show a secular decrease. The existence of

pulsars like the Vela and the Crab, whose periods lie in the forbidden range for

oscillation and show a secular increase of the period itself, rules out also the

oscillating model.

The only possible explanation remains the rotation of a compact star, and

now it is also possible to check if pulsar can be both or either white dwarfs

and neutron stars. The minimum rotational period can be roughly estimated
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by imposing the simple condition that the equatorial tangential velocity cannot

exceed the speed of light:

veq =
2πR

Prot
< c (3.4)

White dwarfs have radii R ' 104 km and, accordingly to eq. 3.4, their

minimum spin period results Prot ≥ 0.2 s, which cannot be compatible with the

periods of pulsars like, again, the Vela and the Crab. Neutron stars have radii

R ' 10 km and the lower limit for their rotation period results Prot ≥ 0.2ms,

much lower than the observed periods of the above mentioned objects.

The rotation model, however, calls in to play another problem: a rotating

object cannot produce an observed pulsating signal if its emission is isotropic.

This implies that pulsar emission is somehow beamed and that the emission

beam is misaligned with the rotation axis. In this way a rotating object can be

observed as a pulsating object as it acts like a lighthouse. But how is it possible

to establish an axial symmetry in the emission pattern?

The axial symmetry can be induced by an axial symmetric field, as a bipolar

magnetic field is indeed. The intensity of the magnetic field is expected to be

huge via simple considerations involving the conservation of the magnetic flux

for a magnetised collapsing object. Let’s consider a solar like star of radius

R0 ∼ 106 km and surface magnetic field B0 ∼ 100 G. The magnetic flux along

its surface is given by:

Φ (B) = 4πB0R
2
0 (3.5)

If now this star collapses to a radius equal to the typical radii of the

neutron stars, the conservation of the magnetic flux through its surface imposes

a variation of the surface magnetic field intensity according to:

4πB0R
2
0 = Φ (B) = Φ (BNS) = 4πBNSR

2
NS (3.6)

From eq. 3.6 it is now possible to estimate the intensity of the magnetic

field, which results BNS ∼ 1012 G. These magnetic fields are by far more intense

than the ones generated artificially in terrestrial laboratories.
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3.2 The energy balance

Once pulsars are identified as rotating objects, the observed secular increase

of the spin period indicates that a pulsar is losing its rotation kinetic energy,

which is the energy reservoir for radio emission. How does the conversion from

rotation energy to radiation occur?

A pulsar has a huge magnetic field, that co-rotates with the pulsar itself.

The theory of electromagnetism says that such a magnetic field has to radiate

energy. Under the assumption of a bipolar field, the emitted power can be

calculated through Larmor’s formula if the rotation frequency and the magnetic

moment are known:

Ėdipole = − 2

3c3
|m̈|2 (3.7)

where Ėdipole is the emitted power and m is the magnetic dipole moment,

whose amplitude can be expressed as function of the pulsar’s surface magnetic

field B0 and radius R:

|m| =
B0R

3

2
(3.8)

The magnetic dipole moment can be rewritten as the product of a unit

vector times its intensity, using cylindric coordinates:

m =
B0R

3

2

(

e‖ cos α, e⊥ sin α cos Ωt, e′
⊥ sin α sin Ωt,

)

(3.9)

where e‖ is an unit vector parallel to the spin axis, e⊥ and e′
⊥ are two unit

vectors perpendicular to the spin axis, mutually orthogonal and co-rotating with

the pulsars, α is the angle between the spin and magnetic axis, and Ω = 2π/P

is the rotation frequency. Combining equations 3.7, 3.8 and 3.9, the emitted

power results:

Ėdipole = − 2

3c3
|m|2 = −2Ω4

3c3
R4B2

0 sin2 α (3.10)

The emitted energy is subtracted from the rotational kinetic energy and,

consequently, its variation can be expressed as:

Ėrot =
dĖ

dt
=

d

dt

(

1

2
IΩ2

)

= IΩΩ̇ (3.11)
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where I is the neutron star moment of inertia. The energy balance can now

be simply obtained by comparing eqq. 3.10 and 3.11:

IΩΩ̇ = Ėrot = Ėdipole = −2Ω4

3c3
R4B2

0 sin2 α (3.12)

3.3 Magnetic field, characteristic age and braking index

The energy balance equation 3.12 allows to determine two important quantities

for a pulsar: the surface magnetic field B0 and the characteristic age τ .

In eq. 3.12 only two quantities, B0 and sin α, are really unknown, but all

others can be directly measured (Ω and Ω̇) or theoretically estimated at least

at the order of magnitude (R and I). Eq. 3.12 can be hence rearranged and the

magnetic field can be expressed as:

B0 =

√

3c3IΩ̇

2Ω3R4 sin2 α

= 3.2 × 1019

(

I

1045 g cm2

)
1
2
(

R

10 km

)−4√

PṖ gauss (3.13)

where numerical values have been obtained under the assumption sin α = 1.

It is useful to see what it would result for a well studied object like the

Crab pulsar, which has a spin period P = 33.08ms and a period derivative

Ṗ = 4.23 × 10−13 s s−1. Its magnetic field, accordingly to eq. 3.13, results

B0 = 3.78 × 1012 G.

The energy balance equation 3.12 can also be used to investigate the time

evolution of the spin frequency. If the frequency derivative is explicited as a

function of all other quantities, the following differential equation is obtained:

Ω̇ = −2B2
0R

4 sin2 α

3c3I
Ω3 = −KΩ3 (3.14)

where K = Ω̇0/Ω3
0 and the subscript indicates the actually observed values.

Integration of eq. 3.14 is straightforward and leads to:

Ω0

Ω
=

[

1 − 2
Ω̇0

Ω0
(t − t0)

]

1
2

(3.15)
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where t0 is the time at which the values Ω0 and Ω̇0 are measured. Under the

assumption that the spin frequency at birth was much higher than the actually

observed value, the left hand side of eq. 3.15 becomes zero and the difference

(t0 − t) = τ has to represent the age of the pulsar. With a little rearrangement,

eq. 3.15 gives the following estimate for the pulsar age:

τ =
1

2

Ω0

Ω̇0

=
1

2

P

Ṗ
(3.16)

In the third term of eq. 3.16 P and Ṗ are measured quantities. A

comparison of the theoretical prediction of this formula with the precisely

known age1 of 951 years (November 2005) for the Crab pulsar is now a very

strict test. Eq. 3.16 predicts an age τ = 1240 yrs, a value that can be considered

in fairly good agreement with Crab’s real age.

Eq. 3.12 is a particular case of the more general equation:

Ω̇ = −KΩn (3.17)

where the constant may be now defined as K = Ω̇0/Ωn
0 . The magnetic

dipole emission is recovered with an index n = 3 while, e.g., if the emission is

due to gravitational quadrupole emission the index is n = 5. Combining eq. 3.17

with its first derivative, the index n can be expressed as a simple function of

the spin frequency and its first and second derivatives:

ΩΩ̈

Ω̇2
= constant = n (3.18)

Eq. 3.18 means that if a measure of the three quantities in left-hand side

is available at a given epoch, the index n can be obtained and informations on

the emission mechanism can be accordingly obtained. Because n appears in the

equation that describes the pulsar slow down or better the way the pulsar is

braking its rotation, this parameter has been given the name of braking index.

Only for very few pulsars the second derivative of the spin frequency has been

1In astronomy age determination is a very difficult task and it is more likely to obtain an order
of magnitude instead of a precise value. Exceptions exist indeed, and are the Crab pulsar and
the Bull Eye pulsar. These two objects lie in the central regions of the remnants of two historical
supernova explosions, occurred respectively in A.D. 1054 (Crab, most probable day: July 4th) and
A.D. 1181 (Bull Eye, exactly known day: August 6th). It’s to mention that all remnants of historical
supernovae have a precisely determined age. But in the two cases highlighted above this age can
be also referred to an observed compact object.
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measured. Reliable determinations of braking indexes have given values close

but not exactly n = 3, indicating that the real emission mechanism is much

more complex than the very simple model of the rotating magnetic dipole.

3.4 The P − B0 diagram

From an observational point of view, the most important measurable quantities

for a pulsar are the spin period and its first derivative. Theoreticians, on

the other side, often prefer using the spin period and the surface magnetic

field intensity for describing the basic properties of these objects. Being these

three quantities linked via eq. 3.13, any structural and evolutionary discussion

grounded on either couple of parameters is perfectly equivalent.

A useful tool to investigate pulsar evolution is the P − Ṗ , or equivalently

P − B0, diagram. Fig. 3.1 is the latter of the two possible choices. In this

diagram pulsars are not uniformly distributed, but are clustered in well defined

groups that can be given an evolutionary interpretation.

The most populated group lies in the center of the diagram and it is

indicated by the red ellipse. These are the ordinary pulsars, i.e. those pulsars

that are still active since their birth in the supernova explosion that formed

the neutron star. Another group is close to the bottom left corner of the

diagram, highlighted by the green ellipse. These objects are named millisecond

pulsars, because of their spin periods that can go down to 1.5 millisecond, or

recycled pulsars, because of the mechanism by which they are formed. Their

position also indicates that recycled pulsars have magnetic fields in the range

B0 ∼ 108 ÷ 1010 G, sensibly lower than ordinary pulsars. The third, and last,

group is placed opposite to the recycled pulsars, in the upper right corner of the

diagram, as indicated by the cyan ellipse. These neutron stars have very long

periods, up to about ten seconds, and huge magnetic fields, up to B0 ∼ 1015 G

(Thompson & Duncan 1996). These object have been given the name magnetars

because of their huge magnetic fields and so far none of them displayed radio

pulsations2.

Two other lines, indicated with the terrible name of death lines, have been

drawn in the diagram. Accordingly to their name they have a very important

2The spin period P and its first derivative Ṗ for these object have been measured by X-ray
observations
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Figure 3.1: Pulsar P-B diagram. The dashed up-right diagonal lines represent
the lines of constant characteristic age. The ones displayed are for τc = 103

yr(a), τc = 106 yr (b), τc = 109 yr(c) and τc = tH (d). Cyan, red and green
ellipses indicates respectively magnetars, ordinary and recycled pulsars. The red
diagonal lines represents the two pulsar death lines which are barely consistent
with the less efficiently emitting pulsar PSRJ2144−3933. The line labelled “2” is
for a dependence B/P 2 = const., while the one labelled “3” is for a dependence
B/P 3 = const. The name graveyard is used to indicate the region of the diagram
where the dead pulsars are located.

meaning in pulsar evolution, which can be understood after a brief insight into

the magnetic field geometry and the emission mechanism (see Fig. 3.2).

The magnetic field is bounded to the neutron star surface and it is forced

to co-rotate with it, as well as its lines. The co-rotation regime is possible until

the tangential velocity remains lower than the speed of light. The region where

co-rotation is possible is named light cylinder and its radius is given by the

obvious relation:

rlc =
Pc

2π
=

c

Ω
(3.19)

The two ovals indicated with the magenta colour in Fig. 3.2 represent the

lines that close within the light cylinder and can entirely co-rotate with the
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Figure 3.2: Pulsar’s magnetosphere representation. The zones coloured in magenta
are filled by the closed field lines, which entirely corotate with the pulsar. The blue
colour indicates the outer gaps, that are filled by the open lines that tend to become
parallel to the equatorial plane outside the light cylinder.

neutron star. All other lines, because they would close at a distance d ≥ rlc

from the spin axis, are no more able to close themselves and remain open. These

open lines have two different asymptotic behaviours as they go to infinity. The

lines of one group tend to become parallel to the plane perpendicular to the

spin axis, while the other tend to become farther ad farther from that plane.

The transition between the two behaviours is given by the line that crosses

perpendicularly the surface of the light cylinder. The region inside the light

cylinder and enclosing all the lines of the first group is called outer gap.

In this model charged particles in the magnetosphere, basically electrons

and positrons, are responsible for the emitted radiation as they move along the

magnetic field curved lines (the emitted radiation has been consequently given

the name of curvature radiation). The rotation of the magnetic field is also

responsible of an induced electric field that accelerates the charged particles till

they have enough energy to produce a particle couple in a further interaction
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with the magnetic field. The newly produced particles in turn move along

the magnetic field lines emitting curvature radiation and are accelerated by

the induced electric field. The emission of the observed radiation is hence due

to a particle shower. In this picture plays a crucial role the induced electric

field, which sustains the particle shower. Its intensity, given by the Lorentz

law, depends on the magnetic field strength and on the pulsar spin frequency.

Leaving fixed the former, the faster the pulsar rotates the higher is the electric

field and the more efficient is the particles pair production. On the contrary, if

the rotation is too slow the induced electric field cannot give enough energy to

the charged particles to produce a new pair, the cascade is no more sustained

and the emission is turned off.

A simple naive argument3 based on elementary physics can now be used to

determine the so called death line. The basic assumptions of this argument are:

i) The magnetic field is bipolar: B = B0 (R0/r)
3. R0 is the radius at which

the magnetic field is B0.

ii) The pulsar emission switches off once the induced potential in the outer

gaps drops below a critical value ∆Wmin = e |∆Vcrit| ∼ 2mec
2

iii) The outer gaps are located close to the light cylinder.

iv) The size of the outer gap is ∆l

The induced electric field is given by the Lorentz equation:

E = −1

c
v ∧ B = −1

c
(Ω ∧ r) ∧ B (3.20)

Treating all vector products as simple products between the amplitudes

and using the assumption that the emitting region is close to the light cylinder

surface, the amplitude of the electric field becomes:

E = −1

c
ΩrlcB = −B0

(

2πR0

c

)3 1

P 3
(3.21)

The electric potential drop along a distance ∆l is hence given by:

3The proposed argument has been developed in a discussion with Luciano Burderi. Maybe it
has been already published in literature.
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|∆V | = E∆l = B0

(

2πR0

c

)3 1

P 3
∆l (3.22)

and, consequently, the energy gain of an electron is:

∆W = e |∆V | = B0

(

2πR0

c

)3 1

P 3
e∆l (3.23)

This energy gain has to be enough to produce at least a new pair electron-

positron:

∆W ≥ ∆Wmin = 2mec
2 (3.24)

Combining eq. 3.23 with eq. 3.24, and substituting the numerical values to

all physical constants, leads to :

B

P 3
≥ 3.63 × 1014

∆l
(c.g.s. units) (3.25)

The still unknown value for the typical size of the emitting region can be

evaluated by the condition that eq. 3.25 must hold for all known pulsars. The

pulsar with the lowest ratio B/P 3 is PSRJ2144−3933 (B = 2.3 × 1012 G,

P = 8.51 s). From eq. 3.25 the constraint on the size of the emitting region

results ∆l >∼ 1 km, value which is in agreement with more detailed works.

A variation of this simple argument assumes that the size ∆l of the emitting

region is a fraction of the light cylinder radius, ∆l = ηrlc. Eq. 3.25 now

becomes:

B

P 2
≥ 7.68 × 104

η
(c.g.s. units) (3.26)

Being now the size of the emitting region a function of the size of the light

cylinder, and hence of the spin period, eq. 3.26 not surprisingly shows a different

dependence from the period if compared to eq. 3.25. Using again the values for

PSRJ2144−3933 to impose that eq. 3.26 must hold for all known pulsars it is

possible to constrain the value for η:

η >∼ ηmin = 2.4 × 10−6 (3.27)

This relation shows again that the emitting region is a small fraction of the

light cylinder radius. It’s worth to mention that the two different assumptions
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on the size of the emitting region, fixed in the first and variating in the second

case, produce different relations between the magnetic field intensity and the

spin period. Although it has been possible to obtain relations consistent to

more detailed works, this argument is meant only to provide a justification for

the existence of a death line for pulsars.

A similar argument can also be applied to models that indicate in the polar

caps the regions where the radio emission takes its origin, obtaining similar

results.

3.5 Formation and evolution I: ordinary pulsars

The formation of pulsars has been basically clarified since the discovery of

PSRB0531+21 in the central region of the Crab nebula. Like all neutron stars

they are formed in supernova explosions. Basic arguments show that most

of the known pulsars have initial spin periods P ∼ 20 ÷ 100ms and surface

magnetic fields B0 ∼ 1011 ÷ 1013 G. Hence pulsars at birth are located in the

upper left corner of the P−B0 diagram. Emission mechanisms are very efficient;

thus pulsars, in a time scale of few years, move horizontally to the right of the

P − B0. In a longer timescale, about 107 ∼ 108 yrs they cross the death line

and enter the graveyard. The decay of the magnetic field along the life of a

ordinary pulsar is negligible. If the neutron star is isolated, its life as a pulsar

is definitely over.

3.6 Formation and evolution II: binary pulsars

The evolution of all pulsars was supposed to be as described above, until the

discovery of the first millisecond pulsar, PSRB1937+21 (Backer et al. 1982).

Its magnetic field and expecially its spin period were in total disagreement with

the values expected at birth for a newly formed neutron star. The discovery in

the early Sixties of galactic compact X-ray sources (Giacconi et al. 1962) and, in

particular, the model proposed to explain their X-ray luminosities (Shklovskii

1967) were the bases to understand the formation of millisecond pulsars.

Galactic compact X-ray sources have been described by Shklovskii (1967)

as binary systems where a compact object is accreting matter released from

the companion. It is to mention for completeness that the original model by
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Shklovskii (1967) indicates neutron stars as the compact object in these binaries,

but also X-ray sources exist where the compact object is either a white dwarf

or a black hole.

The geometry of the gravitational field play a key role in understanding how

matter exchange can occurr in a binary system. In a reference frame centered on

the binary system center of mass and co-rotating with the system, the analytic

expression of the gravitational potential VR is simply given by:

VR (r) = − GM1

|r − r1|
− GM2

|r − r2|
− 1

2
|ω ∧ r|2 (3.28)

where r, r1 and r2 indicate respectively the vector position of a given point

and of the stars of mass M1 and M2, ω is the angular velocity vector of the binary

system. The first two terms indicate the gravitational potential generated by

the two masses, while the third term expresses the effects of the centrifugal

potential. Fig. 3.3 illustrates the sections of some equipotential surfaces along

the orbital plane.

Figure 3.3: Roche lobes geometry.

In the neighbours of one star the gravitational effects of the other are

negligible and the equipotential surfaces are spherical. At larger distance

the effects on the potential due to the other star are no more negligible and

the equipotential surfaces are elongated towards the perturbing stars. These

deformations become larger and larger until two of them, one from either star,

touch each other in a single point, indicated in Fig. 3.3 by the label “L1” and
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named inner Lagrangian point. These two touching surfaces define together

the critical surface, recognizable because of its ∞ shape. Further equipotential

surfaces enclose both objects. A point mass inside either lobe, named Roche

lobe, of the critical surface is basically subjected to the gravitational pull of the

star inside the same lobe, while outside the critical surface the gravitational

pull is determined jointly by the two stars.

Mass transfer between the two stars can occurr in two main ways: stellar

wind and Roche lobe overflow. In the first case, stellar wind, the name is

already self-explaining: the donor star is losing matter via its stellar wind and

a fraction of it, being directed towards the companion’s Roche lobe, accretes

onto the compact object.

The second case, Roche lobe overflow, occurs when the donor star fills its

Roche lobe. This mainly occurs during the transition from the main sequence

to the giant branch, or later in the transition fron the horizontal branch to the

asymptotic giant branch. Being a fluid, the surface of the donor is shaped along

a well defined equipotential surface. As the donor increases its radius, its shape

deviates from the spherical shape in the same way the equipotential surfaces

inside its lobe, till it fills its lobe. As this situation is reached, matter starts to

flow into the other lobe through the inner Lagrangian point and may accrete

onto the compact object.

We’re now in position to understand the evolution of a pulsar in a binary

system. Let’s consider a binary whose members are a main sequence star,

whose mass is in the range of the neutron stars’ progenitors, and a lighter

main sequence companion. The more massive star rapidly evolves, undergoes

a supernova explosion and leaves a neutron star that may be an active young

pulsar. If the binary system is disrupted by the explosion, this pulsar will evolve

as explained in § 3.5: it will live only as a ordinary pulsar and once the rotation

won’t be fast enough to sustain the emission processes it will switch off.

If the binary system survives to the first supernova explosion, the resulting

system is a ordinary pulsar orbiting around a main sequence star in an elliptic

orbit. Because of its very short life the pulsar rapidly slows down, and remains a

main sequence star orbiting around a radio quiet neutron star. As mass transfer

turns on, the neutron star becomes again detectable as a compact X-ray source.

Strong tidal forces that are active when the mass transfer is active rapidly
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circularise the orbit.

As a consequence of the orbital motion of the system, the transferred matter

carries angular momentum which is gained by the accreting neutron star that,

in this way, increases its spin frequency (but see also § 3.7). Because only few

tenths of solar mass are enough to spin up a neutron star till it reaches rotation

periods of one millisecond, the accreting object can easily exit the graveyard

and, once the accretion phase is terminated, it can be detected again as a

recycled pulsar.

3.7 Formation and evolution III: mildly and fully

recycled pulsars

Although it is now clear how recycled pulsars are formed, it has not yet been

discussed how the recycling process effectively works and terminates.

If the donor is an high mass star, accretion mainly occurs via stellar wind.

Since the released mass is emitted isotropically, only a fraction of it enters inside

the neutron star gravitational influence. At large distances from the neutron

star the magnetic field pressure (S.I. units):

Pmag (R) =
B2

0

2πµ0

(

RNS

R

)6

(3.29)

is negligible compared to the infalling matter ram pressure:

Pram = ρv2 (3.30)

In eq. 3.29 B0 and RNS are respectively the surface magnetic field and

the radius of the neutron star, µ0 is the magnetic permeability in vacuum, R

indicates the radial coordinate. In eq. 3.30 ρ and v are respectively the density

and the velocity for the infalling matter.

The magnetic and ram presures balance each other at a radius RM,

known as magnetospheric or Alfvèn radius, whose value can be simply obtained

equating the right hand sides of eqq. 3.29 and 3.30. Assuming the speed of the

infalling matter equal to the free-fall speed:

v (R) = vff (R) =
(

2GMNS

R

)1/2

(3.31)
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where MNS is again the mass of the neutron star, and simply noting that

|ρv| = Ṁ/4πR2, where Ṁ is the accretion rate, the Alfvèn radius can be

espressed as

RM =

(

16π2

2Gµ2
0

B4
0R

12
NS

MNSṀ2

)1/7

= 135

(

MNS

M�

)−1/7 (
Ṁ

108M� yr−1

)−2/7
(

B0

1010 G

)4/7

×
(

RNS

10 km

)12/7

km (3.32)

Inside the Alfvèn radius the magnetic field dominates the dynamics of the

infalling matter. At this radius the captured matter exerts a torque onto the

neutron star because of the difference between the corotation velocity:

vcor =
2πRM

P
(3.33)

of the magnetic field lines and the Keplerian velocity:

vK =
(

2GMNS

RM

)1/2

(3.34)

of the infalling matter.

If at the Alfvèn radius the Keplerian velocity vK is larger than the corotation

velocity vcor the torque exerted by the captured matter increases the neutron

star spin frequency, i.e. it shortens the spin period P , while moving towards the

neutron star along the magnetic field lines. The neutron star is hence spinning

up. On the other hand, if at the Alfvèn radius the Keplerian velocity vK is

smaller than the corotation velocity vcor, the torque exerted by the captured

matter has the opposite effect, namely it increaes the spin period while moving

away from the neutron star.

Because of the dependency of vcor from the spin period P , the condition

vK = vcor indicates that with this process a neutron star cannot be spun-up to

spin periods shorter than a the following limit:

Pmin =
2πR

3/2
M

(2GMNS)
1/2

=
√

2π





(

4π

µ0

)3
B6

0R
18
NS

(GMNS)5Ṁ3





1/7
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= 0.44

(

MNS

M�

)−5/7 (
Ṁ

108M� yr−1

)−3/7
(

B0

108 G

)6/7

×
(

RNS

10 km

)18/7

ms (3.35)

Eq. 3.35, if it is read as a relation between the minimum possible spin period

versus the surface magnetic field, is named spin-up line. Once it is drawn in a

Pspin−B diagram it provides an useful tool to investigate in detail the recycling

process, including the eventual decay of the magnetic field, that somehow has to

occurr during the evolution of a neutron star that becomes a recycled pulsar to

explain why millisecond pulsars have magnetic fields sensibly lower than young

and ordinary pulsars.

Eq. 3.35 also states that wind accretion is in principle able to spin up

neutron stars till they reach spin periods of order of the millisecond. It

usually doesn’t happen, since a high mass star has too a short life to allow

the recycling process to spin up the neutron star to such short periods. The

spin up phase is suddenly terminated with the supernova explosion of the high

mass companion, and the recycled pulsar will have spin periods of several tens

of millisecond4. These pulsars are also named mildly recycled pulsars, where

the term mildly comes from the comparison with the millisecond pulsars also

named fully recycled (see below).

The supernova explosion can either completely destroy the exploding star

or give the newly formed compact object a kick that unbinds the binary. In

either case the result is an isolated mildly recycled pulsar and another isolated

compact object, which may be active as a ordinary pulsar if the remnant is a

neutron star. If in turn the supernova explosion leaves a remnant and the binary

system remains bound, the result is again a mildly recycled pulsar orbiting

around a compact object in an elliptic orbit. The compact object may be

a ordinary pulsar, and it may be detected as a double pulsar system if it is

observed when the young pulsar is active, or as a double neutron star system

like PSRB1913+16. It is worth of mention that, again under the condition that

the system remains bound, a further kind of binary system may be formed in

4The double pulsar is believed to have had a peculiar evolution just before the supernova
explosion that formed PSRJ0737−3039B. This is indicated by the spin period of PSR J0737−3039A,
which is of only 22 ms, and the actual low orbital separation, which is very close to the pre-supernova
one because of the low eccentricity of the orbit.
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this way, namely a pulsar-black hole binary.

If the donor is a low mass star, mass transfer turns on as the star fills

its Roche lobe. The accreting matter forms a disk-shaped structure around

the neutron star, as consequence of the angular momentum carried by the

transfered matter and the small size and the location of the area through which

the tranfered matter enters the neutron star Roche lobe. The standard model

for accretion disks (see e.g. Frank et al. 2002) is grounded on the assumptions

of a steady disk, optically thick and geometrically thin. The plasma in the

disk follows quasi-Keplerian orbits around the neutron star and viscous torques

inside the disk give the plasma a radial drift velocity towards the accreting

object, whose amplitude is smaller than the Keplerian orbital velocity at the

same radius. The angular momentum exchange occurs at the inner boundary

of the disk, whose radius is determined by the geometry of the magnetic field.

Detailed calculations show that the inner boundary of the disk is located at

a radius Rin at which the torque exerted by the magnetic field balances the

viscous torques exerted in the disk at Rin. Under the steady disk hypothesis,

this condition is equivalent to set the magnetic torque equal to the transport rate

of specific angular momentum L̇ = ṀR2
inΩ(Rin). The expression for Rin results

of the same order of the Alven radius RM in the case of wind accretion, within

a factor of two. The value Rin ∼ 0.5 RM allows to obtain a good quantitative

agreement with fully detailed calculations.

Also in this case the accretion is effective in spinning up the pulsar if the

corotation velocity vcor at the inner radius of the accreting disk is smaller than

the Keplerian velocity vK(Rin) at the same radius. Again setting equal these

two velocities it is possible to determine the minimum spin period Pmin to which

a neutron star can be accelerated. Eq. 3.35 is still able to give the correct value

for Pmin within a factor of order of unity, and the conclusion that this recycling

process is in principle able to spin up a neutron star till it reaches spin periods

of order of the millisecond is correct.

What really determines the final spin period is again the time the donor

star can fill its Roche lobe and transfer mass to the neutron star. In this case

we are dealing with low mass stars, whose evolution is slower than high mass

ones. Moreover since the transfer of mass from one lobe to the other occurs

through the inner Lagrangian point, all the transfered mass is in position to
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transfer its angular momentum to the accreting neutron star, so this mechanism

has an higher efficiency in spinning up the neutron star than the wind driven

accretion. Finally the mass transfer modifies the mass ratio of the system and,

consequently the size of the Roche lobes. Taking into account all these elements,

it is possible to demonstrate that such scenario is effectively able to spin up a

neutron star till it reaches a spin period of few milliseconds, i.e. quite close to

the limit imposed by the spin up line.

At the end of the recycling process a millisecond pulsar is typically orbiting

around a light white dwarf in a circular orbit. The case of PSRB1937+21, a

fully recycled isolated pulsar, appears peculiar. It is believed that, in the post-

accretion phase, the pulsar emission beam lied onto the orbital plane. The

companion, consequently, where subjected to the strong particle’s wind from

the emission beam and has been ablated.

3.8 Formation and evolution IV: pulsars in globular
cluster

The low stellar density of the galactic disk makes very unlikely for an isolated

star to form a binary system via casual encounters with other stars. The

environment of a globular cluster is totally different. Its very high stellar density

provides a lot of dynamical encounters among its stars, that can form double,

but even triple and sometimes quadruple systems.

Globular clusters are the oldest structures of the Galaxy, being occurred

their formation in the early stages of the Galaxy formation; consequently, their

stars are old. This explains the lack of high mass main sequence stars simply

because they have already evolved. A consequence is that a globular cluster is

hosting a lot of stellar remnants like neutron stars. The dynamics of a globular

cluster is characterised by stellar sedimentation, also known as mass segregation,

i.e. the heaviest stars are located much closer to the cluster center, while the

lightest tend to be located in a much wider region.

Like in the galactic disk, neutron stars in globular clusters are formed

in supernova explosions and live as ordinary pulsars for about 107 ÷ 108 yrs.

Although this is exactly what already explained in § 3.5, neutron stars in

globular clusters are indeed much older than galactic ones, and they are old
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enough to have ended their life as ordinary pulsars and being segregated in

the cluster’s central regions. Because of the high stellar density, particularly in

the central regions, it doesn’t matter if a neutron star was isolated at the time

it was a young pulsar. It may have had the chance to form a binary system

via tidal capture of another isolated main sequence star, or via an exchange

encounter with a binary system. This ensures that a old neutron star has a

higher probability than in the galactic field to be spun up and to be observed

as a recycled pulsar. Although globular clusters contain a very small fraction of

the mass of the galaxy, it is to note that the number of millisecond pulsars per

solar mass unit is higher for globular clusters than for the entire galaxy, and

this indicates that globular clusters are more efficient in producing millisecond

pulsars than the galaxy as a whole. Two globular clusters are known to host

a remarkable number of millisecond pulsars: 47 Tucanae, with 22 (Manchester

et al. 1990, 1991; Robinson et al. 1995; Camilo et al. 2000), and Terzan 5, with

33 (Lyne et al. 1990; Lyne et al. 2000b; Ransom et al. 2005; Hessels et al. 2006).

Moreover all known pulsars in globular clusters have spin periods and magnetic

fields typical of fully or mildly recycled pulsars, and this suggests that these

neutron stars may have experienced at least one accretion phase.
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Chapter 4

Pulsar timing

The name pulsar timing denotes the peculiar analysis that can be performed

because of the pulsating behaviour of the observed signal. It consists in

the determination of pulses’ time of arrival (ToA) and their comparison to

an appropriate model. The key point is the ToAs determination, obtained

comparing the observed pulse with a template. This requires for an observed

pulse to have a well defined shape and a good signal to noise ratio.

Unfortunately the first requirement isn’t met by any pulsar, if single pulses

are used: this feature has lead to the use of the integrated profile, which is the

sum of a high number of single pulses. It allows to obtain a pulse with a stable

profile and a good signal to noise ratio even for those pulsars too faint to observe

their single pulses.

Several models can be applied to a ToAs set. The choice of the appropriate

model depends on the type of pulsar and on the measurability of the various

dynamical effects the pulsar is undergoing.

4.1 Single and integrated pulse

With the name single pulse it is indicated the peak of the radio emission that

is detected when the pulsar’s emission beam is directed towards the Earth.

Pulsars are in general weak sources and for only a small number of them their

brightness is high enough to allow the detection of single pulses. As is shown in

Fig. 4.1, even for the strongest sources single pulses have not the same profiles,

once compared to each other. This is due to the not constant structure of the

pulsar’s magnetosphere in the regions where the observed radiation is produced.
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The shape of a single pulse can be seen as the photograph of the magnetosphere

at the time the pulse has been emitted. As an example, more than 500 pulses

are shown in Fig. 4.1 in a grey-scale mode.

Figure 4.1: Comparison between single (bottom panel) and integrated (upper panel)
pulses. Five hundred single pulses are plotted in gray-scale mode. The main peak of
each single pulse is randomly displaced around a mean position. It is possible to see
that some pulses are totally absent, and pulse substructures show a very irregular
behaviour. In the top panel the correspondent integrated profile has been plotted.

Single pulses’ main peaks are not aligned to each other, but appear at

a quasi random position around an average location, and they may even

not appear in some rotations. Pulse substructures have even more irregular

behaviours. At the top of Fig. 4.1 a well defined profile is plotted. It is the

sum of all shown single pulse’s profiles and it is named integrated profile. Its

fundamental property is that its shape is recovered in any observation of a given
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pulsar, provided a high enough number of single pulses are added together.

The integrated profile has not an universal shape, but each pulsar has

its own profile with a recognisable shape. The integrated profile can be

consequently considered as the signature of a given pulsar and its shape

describes the average structure of the emitting region. Observations of a pulsar

at different frequencies result in different shapes for the corresponding integrated

profiles. These differences have two origins, one intrinsic and one extrinsic. On

one side, signals at different frequencies are produced in different parts of the

emitting region, which have in turn different structures. On the other side, the

emitted signal has to travel through the interstellar medium, whose effects on

the signal sensibly vary with the frequency.

A good determination of the ToA of a pulse can be obtained if a good

signal to noise ratio is achieved. This is usually done with wide band and

long time observations. Two problem arise when attempting to build a single

integrated profile by using such an observation. The first problem arises from

the observation length, also named integration time. Because of the Earth

rotational and orbital motion, the telescope has not a constant radial velocity

with respect to the observed pulsar, and this affects the pulses’ period with a

Döppler distortion, which depends on both the position of the Earth along its

orbit and the sidereal time of the observation. Moreover Earths motions are

fast enough that in a typical integration time of one hour these effects cannot

be considered constant. Wide band observations allow in principle to detect a

signal with an higher signal to noise ratio, but the ionised component of the

interstellar medium alters the group velocity of a signal propagating through

it. The observing frequency band has consequently to be subdivided in narrow

channels, to recover the pulsating behaviour of the signal.

4.2 Building the integrated profile I: the observed

period.

The integrated profile is the sum of many single pulse profiles. The use of the

integrated profile to determine a ToA is justified by its invariance with time

that makes it comparable with a reference template. The basic idea is simple:

the whole observation is subdivided in parts, each of them as long as the pulsar

40



period expected at the radiotelescope. These parts are then folded together

and, if the spin period is known with enough accuracy, a well peaked profile is

obtained. It is as easy in theory, as complicated in practise. The basic theory

of the Döppler effect relates the observed period to the intrinsic period:

Pobs = γPintr

(

1 − vR

c

)

(4.1)

where γ is the Lorentz factor γ = 1/

√

1 − v2
R

c2
and vR is the radial velocity

of the emitting object. From eq. 4.1 is clear that if the radial velocity of the

pulsar with respect to the observer is constant, it’s not a problem to subdivide

the observation into equal parts. But the assumption of constant radial velocity

is always wrong, because of the nonlinear motions of the Earth around the solar

system’s barycenter.

The practical procedure, here described for an isolated pulsar, requires

the knowledge of the Earths ephemeris. The whole observation, whose length

is usually named integration time, is at first subdivided into intervals, named

subintegrations, short enough to assume constant the observed period and, using

the Earth’s ephemeris, the expected value for the observed period is calculated

for each subintegration. The typical length of one subintegration is 1min. The

signal in each subintegration is then subdivided in equal intervals accordingly

to the expected observed period, and all these single chunks of observation are

folded to each other to obtain the subintegration profile. These subintegrations

are then properly summed till a good profile is achieved.

4.3 Building the integrated profile II: the effects of the
signal propagation through the interstellar medium.

Another way to increase the signal to noise ratio of the pulse is to perform wide

bands observations, but the presence of ionised gas along the line of sight affects

the propagation of the signal at each single frequency inside the observation

band.

The theory of the electromagnetism says that the speed of an

electromagnetic wave through an ionised medium is given by:
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vg = c

[

1 − nee
2

2πmeν2

]

(4.2)

where vg denotes the group velocity, ne is the electron number density, e and

me are the electron charge and mass respectively and ν is the frequency of the

electromagnetic wave. Eq. 4.2 is usually rewritten using the plasma frequency

νp = nee
2/2πme:

vg = c

[

1 − ν2
p

ν2

]

(4.3)

The plasma frequency, as can be inferred from eq. 4.3, represents the

minimum frequency for an electromagnetic wave to propagate through an

ionised medium whose electron density is ne. The time dt required to travel

along a path of length dL is:

dt =
dL

vg

=
dL

c

[

1 − ν2
p

ν2

]−1

' dL

c
+

nee
2

2πmecν2
dL (4.4)

The first term is the time required to travel along dL in vacuum, while the

second term indicates the delay due to the presence of the ionised medium. The

time to travel along a path L results:

t =
L

c
+

e2

2πmecν2

∫ L

0
nedL′ (4.5)

where the two terms have the same meaning as in eq. 4.4. Considering

now two waves of frequency ν1 > ν2 travelling along the same path, the times

required by each wave differ by an amount ∆t given, accordingly to eq. 4.5, by:

∆t =
e2DM

2πmec

[

1

ν2
2

− 1

ν2
1

]

(4.6)

DM indicates the integral in eq. 4.5 and is named dispersion measure. The

dispersion measure gives an estimate of the average electron density along a line

of sight till the pulsar:

DM =
∫ L

0
nedL′ = 〈ne〉L (4.7)

Putting some numbers in eq. 4.5 it is possible to get an estimate for the

relative delay between two waves whose frequency are ν1 and ν2:
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∆t = 4.15 × 103

(

DM

pc cm−3

)[

1

ν2
2,MHz

− 1

ν2
1,MHz

]

s (4.8)

where the subscripts MHz indicate that eq. 4.8 holds if frequencies are

expressed in MHz. As an example, let’s consider the Multibeam receiver

of the Parkes radio telescope, which operates in the band 1387.75MHz≤
ν ≤ 1515.75MHz, observing a pulsar with a DM=30pc cm−3, as for the five

pulsars in the globular cluster NGC6752. The time delay between the lower

and the higher frequency in the band is ∆t ∼ 10ms. This means that if the

signal in this frequency band were recorded in a single frequency channel, all

the pulsars in the cited globular cluster, whose periods are all below 10 ms,

couldn’t be detected at all, because their pulses at the lowest frequency of the

observation band would be affected by a time delay, with respect to the pulses

at the highest frequency, longer than their periods. To avoid this problem, the

frequency band is subdivided in channels narrow enough to consider negligible

the pulse dispersion inside a single channel. To remain into the same example,

the signal from the multibeam receiver is redirected to a filterbank set with 256

channels of frequency amplitude ∆ ν =500 kHz for each of the two orthogonal

linear polarisations. In order to calculate the smearing inside a single channel, it

is useful to rewrite eq. 4.8 in the case of two frequencies differing by an amount

∆ν � ν:

∆t = 8.3 × 103

(

DM

pc cm−3

)

∆νMHz

ν3
MHz

s (4.9)

Inserting numbers in eq. 4.9, and in particular ν =1451.75MHz, which is

the central frequency of the band of the Multibeam receiver, ∆ ν =0.5 MHz

and again DM=30pc cm−3, the smearing inside a single channel is ∆ t ∼ 40µs,

much shorter than the period of the pulsars in the cited cluster. In order to

recover the signature of the pulse, the signals in each channel are shifted in time

accordingly to the delay relative to their frequencies and then added together.

This procedure is called signal dedispersion.

Fig. 4.2 explains the situation. The signals in each frequency channel are

plotted without correcting for dispersion effects. It is evident the drift of the

pulses along the channels. If these signals were added without correcting at

the appropriate dispersion measure, any signature of the pulsation would be
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Figure 4.2: Top panel: dispersed pulses along a frequency band 420 ≤ ν ≤ 470 MHz.
Bottom panel: Integrated pulse profile after frequency dedispersion.

completely smeared away. The lower part of Fig. 4.2 shows the resulting pulse

after an appropriate dedispersion.

4.4 Building the integrated profile III: the real complete
procedure.

A summary of the last two sections explains the whole procedure to build the

integrated profile for an observation. For each frequency channel subintegrations

are built accordingly to the procedure described in § 4.2, taking also into account

the time delay at the frequency of the channel accordingly to § 4.3. In this way a

number N × M of subintegrations is obtained, where N and M are respectively
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the ratio between the integration and subintegration times and the number

of channels along the bandwidth. Each subintegration is nothing else but a

profile with some additional informations, among which the most important are

the start and end time, the central frequency and the value of the dispersion

measure. The obtained subintegrations are stored in a file called archive, which

can be considered as an N × M matrix whose elements are profiles. The profiles

of all subintegrations are finally added together to obtain the integrated profile.

An integrated profile with a good signal to noise ratio can be used as

standard profile, i.e. the profile used as a template to calculate the pulses’ time

of arrival. When two or more of such good integrated profiles are available, they

are further added together to obtain a profile with a very high signal to noise

ratio.

4.5 The determination of the pulses’ times of arrival

The determination of the time of arrival of a pulse (ToA) is performed by

comparing the standard profile to the integrated profile.

Figure 4.3: Integrated (red) and standard (blue) profiles. The dotted blue line is
the standard profile again, after its peak has been shifted to the position of the
integrated profile peak. The time shift required is indicated with τ .
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As shown in Fig. 4.3, the integrated profile contains the basic information of

the time ts at which the observation started, while the standard profile contains

a reference point, indicated with t0, which is usually but not necessarely located

at its starting point (any other choice of the position of the reference point in

the standard profile is equally viable). The meaning of the reference point is

not obvious and needs to be clarified. It is a point on the time axis of the

standard profile and it is located at a time coordinate 0 ≤ t0 ≤ P , where

P is the pulsar’s spin period. Since the comparison between the standard and

the observed profile allows to determine their relative displacement, which can

be also considered the rotational phase ϕ of the pulsar at the epoch of the

observation, it is necessary to define the situation which correspond to ϕ = 0.

This situation is the one illustrated in Fig. 4.4: the standard and integrated

profiles are already aligned, and the ToA is simply defined as:

ToA = ts + t0 (4.10)

Figure 4.4: If the observed and standard profiles are already aligned it is defined for
the pulsar to be observed at the rotational phase ϕ = 0, and the time at which this
phase is observed is the ToA= ts + t0 for the observed profile.

If a pulsar is observed at an arbitrary rotational phase ϕ, a time shift is
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required to superimpose the standard profile to the observed one. Indicating

with τ the required time (Fig. 4.3), the ToA is simply given by:

ToA = ts + t0 + τ (4.11)

to which correspnds the rotational phase ϕ = τ/P .

The determination of the time shift τ between the two profiles (hereafter in

this section refer to Fig. 4.3) is done assuming that the observed profile p (t) can

can be expressed in terms of the standard profile s (t) by the following relation

(Taylor 1992):

p (t) = a + bs (t − τ) + n (t) (4.12)

where a is a constant, b represents the amplitude of the observed profile

with respect to the standard and n (t) models the background noise (not shown

in Fig. 4.3 just for simplicity). Performing a Fourier transformation, eq. 4.12

becomes:

Pke
ikθk = a + bSke

i(kφk+kτ) + Nk (4.13)

In eq. 4.13 Pk, Sk and Nk are the Fourier transformations of the observed

profile, the standard profile and the background noise respectively, θk and φk

are the phases of Pk and Sk respectively. Values for b and τ are obtained via

the minimisation of the following χ2:

χ2 (b, τ) =
N/2
∑

k=1

[

Pke
ikθk − bSke

i(kφk+kτ)

σ

]2

(4.14)

In eq. 4.14 N indicates the number of bins the profiles are subdivided and

σ is the background noise root mean square (r.m.s.). The uncertainty στ in the

ToA is assumed to be the change in the value of τ that increases the value of

χ2 by one unity, and is given by:

σ2
τ =

σ2

2b
∑N/2

k=1 k2PkSk cos (φk − θk + kτ)
(4.15)

Once all ToAs and their uncertainties have been determined, ToAs are fitted

to an appropriate model in order to determine the parameters of the observed

pulsar.
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4.6 Topocentric and barycentric ToAs

The determination of a ToA, as explained in § 4.5, is grounded on the time

at which the observation starts, and indicates the time at which the pulse is

detected at the radio telescope. All these ToAs are named topocentric ToAs. As

is explained in Fig. 4.5, ToAs from observations at different epochs are affected

by a systematic contribute due to time required by the signal to reach the

Earth at its position along its orbit. The same argument has to be applied to

observations done at different sidereal times: in this case what is different is

the position of the telescope as consequence of the Earth rotation. In order to

compare all collected ToAs, they have to be scaled as if all observations were

done using an ideal telescope placed in a convenient reference frame. The most

obvious choice is the barycenter of the solar system. It is to note that it does

not coincide with the center of the Sun mainly because of the mass of Jupiter,

which is large enough to place the barycenter outside the Sun’s surface and give

the Sun itself a motion around it. ToAs rescaled to the reference frame of the

solar system barycenter are named barycentric ToAs.

Once the pulsar position is known, the basic transformation from

topocentric to barycentric ToAs is purely geometrical and is nothing else than

the time delay or advance for the signal to be detected by the telescope on

the Earth with respect to the ideal one placed in the barycenter. Indicating

with n an unit vector along the line of sight, rT the telescope position vector

with respect to the Earth’s center, rE the Earth position vector with respect to

the Sun’s center and with rS the Sun position vector with respect to the solar

system barycenter, this correction, also named Römer delay results:

∆R,� = −n · (rT + rE + rS)

c
(4.16)

Another correction, named Shapiro delay, is due to the curvature of the

space time inside the solar system (Shapiro 1964), caused by the presence of

the masses of planets, Earth included, satellites, planetoids and asteroids. Its

expression is given by:

∆S,� = −2
∑

i

GMi

c3
ln

[

n · rT
i + rT

i

n · rP
i + rP

i

]

(4.17)
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Figure 4.5: The Römer delay represents the time difference for two signals from the
same source to reach the Earth and the Sun. It depends on the position of the Earth
along its orbit and may be either positive or negative.

where rT
i and rP

i are the position vectors of the telescope and the pulsar

with respect to the i-th body of mass Mi, including the Earth.

A third correction, the Einstein delay, takes account for the time dilatation

due to the Earth motion with respect to the barycenter and the gravitational

redshift caused by the masses of all bodies but the Earth in the solar system.

The total delay (Backer & Hellings 1986) is given by the integral of the following

expression:

d∆E,�

dt
=
∑

i

GMi

c2rT
i

+
v2
T

2c2
+ constant (4.18)

Two further corrections are due to the time delay caused by the interstellar

medium, as explained in § 4.3, and to the clock corrections to be apported to

the local maser clock to rescale it to UTC1 via the GPS network. Summarizing,

the transformation from the topocentric to barycentric ToAs is given as the sum

of five contributes:
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ToAbarycentric = ToAtopocentric + tcorr −
D

ν2
+ ∆R,� + ∆S,� + ∆E,� (4.19)

where tcorr indicates the clock corrections and D
ν2 takes account for the

dispersive effects by the interstellar medium.

4.7 Timing models

Once a set of ToAs is available, they are fitted to an appropriate timing model

in order to measure the pulsar parameters. A timing model consist of a set of

parameters, which can be divided in three groups:

(i) Spin parameters: the pulsar period and its derivatives.

(ii) Astrometric parameters: dispersion measure, celestial coordinates and

proper motion.

(iii) Binary parameters: Keplerian and post-Keplerian parameters (when

applicable).

Once the model has been chosen, the timing procedure is a comparison

between the ToAs predicted by the model and the observed ones. The

differences between a prediction and the relative observation are called timing

residuals. The fit consists in the minimisation of the χ2 of the residuals, as a

function of the timing parameters:

χ2 =
N
∑

i=1

[

ti − Mi (P1, ..., PM)

σi

]2

(4.20)

where ti is the measured i-th ToA, Mi (P1, ..., PM) is the prediction of

the i-th ToA according to the model and as function of the set of parameters

P1, ..., PM , and N is the number of ToAs.

Any timing model contains two parameters from the first group, the spin

period and its first derivative, and three from the second group, the dispersion

measure and the celestial coordinates. The spin period is, naturally, the basic

pulsar parameter, as it is directly related to the nature of pulsars as rotating

bodies. The spin period first derivative is always present in a timing model
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because the period changes due to the pulsar spin down are measurable within

few months. The celestial coordinates are involved in the ToAs transformation

to the solar system barycenter reference frame. The dispersion measure is also

present in any timing model because of its crucial role in the procedure to

build integrated profiles. However timing techniques also allow to improve the

measurement of its value if observations at different wavelengths are available.

The first gross value for the spin period and the dispersion measure included in

the pulsar’s ephemeris file is often the one determined in the search procedures,

which are not discussed here because they are beyond the aim of this work.

An improvement of this simple model is obtained adding one more spin

parameter, the spin period second derivative, and two more astrometric

parameters, the two components of the proper motion. In both cases, their

measurability is affected on one side by their amplitude and, on the other, on

the time length of the available data span.

If the pulsar is in a binary system, binary parameters have to be included

in the model. The basic binary model contains five parameters, the so-called

Keplerian parameters:

(i) The binary period PB;

(ii) The projected semi-major axis a sin i of the pulsar orbit around the center

of mass of the binary system;

(iii) The time of the passage at the ascending node TASC or, equivalently, the

time of the passage at the periastron T0;

(iv) The orbital eccentricity e;

(v) The longitude of periastron ω .

In Fig. 4.6 geometric parameters and some auxiliary definitions are

illustrated. The green line is the line of sight, while the red one is the line

of the nodes, i.e. the line passing through the two points through which the

orbit crosses the celestial sphere. These two lines define a plane, and the ellipse

is the projected orbit, i.e. the projection of the true orbit onto the plane defined

by the two lines. The black dot labelled with c.m. is the center of mass of

the binary system, while the indicated red dot at the crossing point between
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Figure 4.6: Orbital parameters and geometrical definitions (see text).

the projected orbit and the line of the nodes is the ascending node (the other

crossing point is named descending node), which is the node crossed by the

pulsar when it is moving away with respect to the observer. The blue point on

the orbit is the periastron or, more precisely, the projection of the periastron

onto the plane and the angle indicated with ω is the longitude of the periastron,

defined as the angle between the periastron and the ascending node.

All five Keplerian parameters are measurable because of the Römer delay

in the binary system, which works in the same way as illustrated in § 4.6 for

the solar system, with the only exception that only one displacement vector is

used, namely the vector that indicates the position of the pulsar with respect

to the center of mass of the binary system.

The knowledge of Keplerian parameters allows the determination of the

mass function for the system:

f (MC) =
M3

C sin3 i

(MP + MC)2 =
4π2

T�

(a sin i)3

P 2
B

(4.21)
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where MP and MC are respectively the pulsar’s and companion’s masses,

i is the inclination of the orbital plane with respect to the line of sight and

T� = GM�/c3 = 4.295µs is a constant. The ratio on the right hand side of

eq. 4.21 between the projected semi-major axis and the orbital period indicates

that this relation is a rearrangement of Kepler’s third law, in order to obtain

a relation among the three unknown parameters MP, MC and i, using already

measured quantities. One property of the mass function is to provide a lower

limit for the companion mass. It is easy to observe that the following disequation

chain holds:

f (MC) =
M3

C sin3 i

(MP + MC)2 ≤ M3
C

(MP + MC)2 ≤ M3
C

M2
C

= MC (4.22)

The first disequation follows from the condition sin i ≤ 1, while the second

is obtained setting MP = 0. Because eq. 4.21 involves three quantities, two

more equations are required to determine the masses of the two objects and the

inclination of the orbit. How is it possible to obtain the two missing equations?

If a binary system is close or eccentric enough, deviations from a Keplerian

orbit are no more negligible and at least one among the parameters in the

following list, called post-Keplerian parameters, may become measurable:

i The orbital period derivative ṖB

ii The periastron advance ω̇

iii The γ parameter

iv The Shapiro delay range r

v The Shapiro delay shape s

The orbital period derivative is the consequence of the orbital decay due

to quadrupole gravitational radiation emission, the γ parameter is the measure

of the Einstein delay in the pulsar’s binary system and the last two parameters

describe the Shapiro delay inside the pulsar’s binary system.

In a very large class of gravity theories, post-Keplerian parameters are

completely determined by the masses of the two orbiting objects and the

Keplerian parameters. Their expressions in general relativity highlight this

basic property:
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ṖB = −192

5
T

5/3
�

(

PB

2π

)−5/3 MPMC

(MP + MC)1/3

1 + 73
24

e2 + 37
96

e4

(1 − e2)7/2
(4.23)

ω̇ = 3T
2/3
�

(

PB

2π

)−5/3 (MP + MC)2/3

1 − e2
(4.24)

γ = T
2/3
�

(

PB

2π

)1/3

e
MP (MP + 2MC)

(MP + MC)4/3
(4.25)

r = T�MC (4.26)

s = sin i = T
−1/3
�

(

PB

2π

)−2/3

x
(MP + MC)2/3

MC
(4.27)

Like eq. 4.21 for the mass function, eqq. 4.23, 4.24, 4.25, 4.26 and 4.27

provide relations between the masses of the two orbiting objects. Consequently,

when two post-Keplerian parameters are measured, it is possible to completely

solve the binary system by determining the masses of the two stars and the

inclination of the orbital plane.
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Chapter 5

Timing of pulsars in NGC 6266

Related Paper:

Possenti, A., D’Amico, N., Manchester, R.N., Camilo, F., Lyne, A.G., Sarkissian, J.,

and Corongiu, A.

Three binary millisecond pulsars in NGC6266

2003 Astrophysical Journal Vol. 599 P. 475

5.1 The globular cluster NGC 6266 (M82)

NGC6266 (M82) is one or the southern globular clusters known to host more

than one millisecond pulsar and regularly observed with the Parkes radio

telescope. The cluster is located at celestial coordinates R.A.= 17h01m12.s8,

DEC.= −30◦06′49′′ (Harris 1996, revision 2003), assumed to represent the

position of its center of mass. Optical observations allowed the determination

of its photometric parameters: its visual magnitude is mv = 6.46 (Harris 1996),

its colour excess is E(B−V ) = 0.47 (Harris 1996) and its distance modulus

mv − Mv = 15.59 Harris (1996). The cluster distance is d = 6.9 ± 1.0 kpc

(Brocato et al. 1996). The mass distribution is characterised by a core radius

rc = 10.′′8 (Harris 1996).

5.2 Pulsars in NGC 6266: Observations

The globular cluster NGC6266 is known to host six millisecond pulsars. The

first discovered pulsar, PSRJ1701−3006A (hereafter in this chapter PSRA,

D’Amico et al. 2001), allowed the subsequent discovery of other two pulsars

(D’Amico et al. 2001b): PSRJ1701−3006B and PSRJ1701−3006C, (hereafter

in this chapter PSRB and PSRC, respectively). Three further millisecond
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pulsars, which are not the object of this work, have been later discovered by

Jacoby et al. (2002) in observations performed with the Green Bank Telescope.

PSRA has been detected for the first time in December 1999 and, after its

confirmation it has been regularly observed since May 2000. PSRB and PSRC

have been confirmed in November 2000. Nevertheless, once their orbits have

been determined all observations taken previously to their confirmation have

been reprocessed, and their signals have been detected in all these observations.

This fact has not to be surprising. The angular size of a globular cluster is

smaller than the beam’s width of the receivers at 20 cm of the Parkes 64m radio

telescope. This means that in a single pointing all pulsars in a globular cluster

are observed at the same time, and if data are recorded unfolded, i.e. there is

no data processing during the acquisition stage, they can be reprocessed more

than one time. This happens, for example, in the case of the discovery of a

new pulsar in a globular cluster in which at least another pulsar was already

known and observed for timing purposes. The number of observations and the

time span available for timing analysis of these three pulsars is consequently

the same.

Regular observations have been carried since September 2000, using either

the central beam of the multibeam receiver and the H-OH receiver, at a central

frequency of 1.390GHz. The typical integration time of these observations

has been of 1 to 2 hrs. After detection, the signal has been fed to a analogic

filterbank including 2×512×0.5MHz channels, where the factor 2 accounts for

the two linear polarisations. The signals from each channel have been added in

polarisation pairs, integrated and 1-bit digitised at a sampling time of 125µs

and recorded to magnetic tapes for off-line analysis.

Observation archives have been produced with the same procedure

described in § 4.4. Each archive contains 1minute subintegrations covering a

frequency band equal to 1/8 of the total observing band. Pulses times of

arrival (ToAs) have been determined using an high signal-to-noise ratio standard

profile. A cross check on the observed pulse shape, via visual inspection, and

the ToA uncertainty allowed to decide how many ToAs had to be extracted for

each pulsar from a single observation.

Pulses times of arrival have been fitted to the appropriate model for each

pulsar with the standard program TEMPO and the DE200 solar system ephemeris
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(Standish 1982). To take account for systematic uncertainties, ToAs error have

been adjusted applying a common multiplication factor, in order to ensure

χ2 = 1. This correction has been applied to each pulsar separately.

5.3 General timing results

Figure 5.1: Post-fit timing residuals as a function of the Modified Julian Day of
observation (left) and integrated pulse profiles at a central frequency of 1390 MHz
(right) for the three millisecond pulsars in NGC 6266 which are discussed in this
paper. The short horizontal line on the left side of each pulse profile represents the
time resolution of the integrated profile including DM smearing.

Tab. 5.1 displays the measured and derived parameters for the three

millisecond pulsars studied in this work. The number of ToAs collected for each

pulsar is roughly the same and the fit resulted in a similar residuals’ r.m.s. The

reasons for this similarity is due to similar flux densities for all pulsars, which

make each detection similar in the signal-to-noise ratio, and to the roughly

equal widths of the standard profiles (displayed in the right panels of Fig. 5.1),

which resulted into similar typical uncertainties for the ToAs for all these three

pulsars. As explained in § 4.5, the definition of the uncertainty σ of ToAs is the

time shift of the standard profile, from its best fit position to the integrated

profile, that increases the best fit χ2 value of one unity. Such definition relates
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the typical ToAs’ uncertainty to the pulse’s width. Moreover, the absence of

interstellar scintillation allowed to collect at least one ToA from each observation

long enough to have a good signal-to-noise ratio. All these facts explain why

all fit parameters have been measured with comparable precision.

The little horizontal lines at the left side of each profile in Fig. 5.1, indicate

their time resolution, which is mainly determined by the signal dispersion caused

by the interstellar medium, and limits the timing precision for these pulsars.

Timing parameters have been determined with a good precision. This

has been achieved because the coverage of the ToAs on the time span has

a good degree of uniformity, as can be seen in the left panels of Fig. 5.1,

where fit residuals are displayed as function of the modified Julian date of

the observations.

Figure 5.2: Post-fit timing residuals as a function of orbital phase for the three
millisecond pulsars in NGC6266 discussed in this paper. All the orbits have been
uniformly sampled, with the exception of PSRB for which TOAs in the region of
the eclipse have been excluded from the fit.

This is anyway not enough for measuring orbital parameters. In this case it

is also necessary an uniform coverage of the pulsar’s orbit. Fig. 5.2 shows the fit

residuals as function of the orbital phase and it is clear that this condition has

been met for PSRA and PSRC. PSRB undergoes eclipses in its orbital motion
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(see. § 5.7) and ToAs are not collectable when the pulsar is close to superior

conjunction. The gap around orbital phase φ = 0.251 is the consequence of the

occurring of eclipses for this object.

The very poor determination of the orbital eccentricity for these pulsar is

mainly due to the still too short data span available, which allowed to put only

an upper limit to this quantity. In the case of PSRB the not uniformly coverage

of the orbit also played a role.

The mean flux densities at 1400 MHz (S1400) in Tab. 5.1 are average values,

derived from the system sensitivity estimate and the observed signal-to-noise

ratio. In the case of PSRB, the quoted flux density refers only to epochs away

from the eclipse (see below). As expected from the relatively high values for

the dispersion measure, interstellar scintillation does not significantly affect the

detectability of these sources; observed variations are within 30% of the nominal

flux density reported in Tab. 5.1.

The inferred radio luminosities of the three millisecond pulsars, ∼
10 − 20mJy kpc2 at 1400 MHz, corresponding to a luminosity at 400 MHz

L400
>∼ 100mJy kpc2 for a typical spectral index−1.7 (see Tab. 5.1) places all

these sources in the bright tail of the luminosity function for millisecond

pulsars in the Galactic disk (Lyne et al. 1998) and in 47Tucanae (Camilo

et al. 2000). If a luminosity distribution dN ∝ L−1d log L (Lorimer

2001) is assumed, NGC6266 would contain a few hundred pulsars with

L400
>∼ 1mJy kpc2, the approximate limiting luminosity observed for Galactic

disk pulsars. Unfortunately, the cluster distance and the lack of any strong

signal enhancement due to scintillation will make difficult detecting the fainter

pulsar population, probably preventing a direct investigation of the shape of

the pulsar luminosity function in this cluster.

5.4 The lack of isolated pulsars NGC6266

A feature common to the three already “timed” millisecond pulsars, and to the

three discovered by Jacoby et al. (2002), is that all of them are members of

binary systems. This fact is quite unusual. In all other globular clusters for

1The orbital phase φ is here defined to be zero when the pulsar is at the ascending node and is
expressed in fractions of unity. Superior conjunction occurs at the orbital phase φ = 0.25, according
to this definition.
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which more than five residing millisecond pulsars are known it has been noted

the presence of both binary and isolated pulsars.

A simple statistic’s argument highlights how unusual is the situation for

NGC6266. A total of 101 millisecond pulsars are known to date to be residing in

globular clusters. Their subdivision in isolated and binaries is close to be equal:

49 are isolated while 52 (including all six in this cluster) form a binary system

with another star, and this correspond to a fraction of isolated millisecond

pulsars Fis ' 1/2. For comparison, the fraction of isolated fully recycled

millisecond pulsars in the galactic disc is Fis ' 1/3. In this case their being

isolated is due to the ablation process of the companion by the strong particle

winds and by the electromagnetic radiation from the pulsar in the post recycling

phases (e.g. Rasio et al. 1989). This picture has been invoked to explain why the

first discovered millisecond pulsar, PSRB1937+21 is isolated and it is believed

to be happening for the binary pulsars PSRB1957+20 (Fruchter et al. 1988)

and PSRJ2051−0827 (Stappers et al. 2001).

In a globular cluster the rate of formation of fully recycled millisecond

pulsars is much higher than in the galactic disk, due to the particular

environment provided by these stellar associations. The very high stellar density

allows the formation of temporary binaries where neutron stars can be spun

up till their pulsar-like emission process is turned on. These same dynamical

encounters are also capable to destroy a binary system, so it is not unusual for

a millisecond pulsars to get rid of its companion after the recycling process and

continue its life as an isolated star.

The balance between the process of formation of binary systems suitable for

recycling pulsars and the destruction of binaries hosting already recycled pulsars

should establish the ratio between isolated and binary pulsars in a cluster. Once

filtered through observational biases this ratio turns out to be the detected ratio

in any given cluster.

The presence of six binary pulsars and no isolated pulsars in NGC6266

is unique in the population of globular clusters hosting pulsars and is very

unlikely to be due to chance. The ratio Fis ' 1/2 for globular clusters

indicates that the probability of discovering a pulsar in a binary system is

P(B) = Fis ' 1/2, and this probability is the same of discovering an

isolated pulsar. But the probability to discover six binary pulsars in a row
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is P(B, B, B, B, B, B) = P(B)6 ' (1/2)6 ' 1.6%. Moreover this probability

has to be lowered if it is considered that it is more easy to discover an isolated

pulsar than a binary one. In the former case the observed period is constant

in time, after correcting for the Earth’s motion which is perfectly known. In

the latter case the observed period is not constant even after such correction,

as it is affected by the pulsar’s orbital motion which is unknown in the search

procedures.

If the absence of isolated pulsars is not due to chance, it has probably

to be related to the particular dynamical state of the cluster which favours the

formation of binaries with respect to their destruction via dynamical encounters.

5.5 Constraints on pulsars and cluster parameters

The projected positions of the three already timed millisecond pulsars lie within

1.8 rc from the cluster’s center. This is consistent with the hypothesis that the

cluster has reached virial equilibrium, in which energy equipartition gives less

velocity to the most massive stars, constraining them to reside deep in the

cluster potential well.

The observed negative values for the spin period derivative for each pulsar

indicates that this quantity is dominated by the component along the line of

sight of the acceleration subjected by the pulsars in their motion in the cluster’s

gravitational potential well (see e.g. Phinney 1993). The maximum possible al

due to the mean gravitational field in NGC6266 is given by the following relation

(accurate at the 10% level for θ⊥ <∼ 2rrmc, Phinney 1992):

al,max = (3/2)
σ2

l

D (r2
c + θ2

⊥)1/2
(5.1)

where σl = 14.3±0.4 km s−1 is the line-of-sight velocity dispersion (Dubath

et al. 1997), θ⊥ is the angular separation of the pulsar to the center of the cluster

and D = 6.9 ± 1.0 kpc is the distance (Brocato et al. 1996). In particular, for

a pulsar whose measured value Ṗ for its spin period derivative is negative, the

following inequality must hold:
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where c is the speed of light, P is the pulsar’s spin period and Ṗi is the

intrinsic period derivative due to the pulsar’s spin down.

The observed lower limit on the magnitude of the line-of-sight acceleration

for PSRB, al = 2.9 × 10−6 cm s−2, is the third largest after those of

PSRB2127+11A and PSRB2127+11D in M15 (Anderson et al. 1990) and is

almost identical to those of the two millisecond pulsars in the central regions

of NGC6752, whose spin period derivative is also negative (D’Amico et al.

2002). For NGC6752, the high values of the spin period derivative for the three

central pulsars imply a central mass-to-light ratio larger than that from optical

estimates (D’Amico et al. 2002). For NGC6266 on the other hand, the upper

panel in Fig. 5.3 shows that the parameters derived from optical observations can

entirely account for the large spin period derivative of PSRB (the vertical size

of the dots in Fig. 5.3 represents the contribution to al/c due to the differential

Galactic rotation). In particular, applying equation (1) of (D’Amico et al.

2002) a lower limit on the central mass-to-light ratio M/L = 1.6 M�/L� can

be derived for NGC6266, which is compatible with the optical value reported in

the literature, M/L = 2.0 M�/L� (Pryor & Meylan 1993). Similarly, using the

observed Ṗ /P of PSRA,corrected for the Galactic contribution, and equation

(7) of Camilo et al. (2000) the inferred lower limit ρ0 = 2.1 × 105 M� pc−3 of

the central mass density of NGC6266 is within the limits obtained from optical

data (Pryor & Meylan 1993). These results suggest that, even though all three

clusters display a compact core and very high line-of-sight accelerations for the

embedded pulsars, the dynamics in the inner region of NGC6266 probably more

resemble those of M15, for which 2 < M/L < 3 was inferred by Phinney (1993).

The satisfactory match between the dynamical parameters of NGC6266

constrained from pulsar timing observations and derived from optical data

allows to use the latter for deriving reliable constraints on the age and surface

magnetic field of the millisecond pulsars. For instance, the lower panel in Fig. 5.3

shows that the intrinsic characteristic age of PSRB should be greater than

∼ 1.3Gyr to be consistent with the cluster’s distance and velocity dispersion

(including their 1σ uncertainties). This in turn implies an upper limit on the

surface magnetic field Bs = 3.2 × 1019 (PṖ )1/2 = 4.0 × 108 G. Less stringent

limits can be similarly derived for PSRA (τi
>∼ 0.15Gyr and Bs

<∼ 17×108 G) and

PSRC (τi
>∼ 25Myr and Bs

<∼ 31×108 G). These values are typical for millisecond
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Figure 5.3: Upper panel: maximum line-of-sight acceleration |al,max/c| = |Ṗ /P | versus
displacement θ⊥ with respect to the center of NGC 6266. The solid and the two dashed lines
represent the predictions based on eq. 5.1 using the nominal values of the distance and of the line-of-
sight dispersion velocity and their 1σ uncertainties obtained from the available optical observations
(see text). The dot-dashed vertical line marks the assumed angular core radius rc = 10.′′8 (Harris
1996). The points represent lower limits to the line-of-sight accelerations based on the timing
solutions for the three millisecond pulsars. The vertical size of the points corresponds to the
contribution to |Ṗ /P | due to the Galactic potential. Lower panel: constraints on the age of PSRB
obtained from eq. 5.1 and eq. 5.2. The thin solid lines and the dotted lines represent the values of
the parameters reported in literature and their 1σ uncertainties. An intrinsic characteristic age of
PSRB larger than about 1 Gyr is compatible with the available observations.

pulsars, both in globular clusters and in the Galactic disk.

5.6 Range of dispersion measures

The millisecond pulsars in this cluster show a large range in dispersion measure,

with a maximum deviation ∆DM = 0.9 cm−3pc with respect to the average

value DMave = 114.34 cm−3pc. This large range may be ascribed to either

a significant gradient in the Galactic distribution of ionised gas towards the

cluster or the presence of plasma inside the cluster.

The first hypothesis is sustained by the strong variations in reddening

observed across this cluster: δE = ∆E(B−V)/E(B−V) = 0.19/0.48 for an angular

displacement of ∆θE ∼ 7′ (as derived from Fig. 3 of Minniti et al. 1992).

The second hypothesis arises since in other globular clusters, namely
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47Tucanae (Freire et al. 2001), M15 (Freire et al. 2001) and NGC6752 (D’Amico

et al. 2002), significant variations of the dispersion measure have been observed

and the same explanation has been proposed. Nevertheless in the case of

NGC6266 the electron number density of a uniform fully ionized gas would

be surprisingly high, ne = 1.7 ± 1.0 cm−3, i.e. an order of magnitude higher

than for these other clusters. A further insight into this feature will be possible

once a timing solution will be available for the other three millisecond pulsars

discovered in this cluster by Jacoby et al. (2002), allowing a better mapping of

the dispersion measure for directions towards this cluster.

5.7 The eclipses in PSR J1701−3006B

PSRJ1701−3006B displays partial or total eclipses of the radio signal at 1.4GHz

near superior conjunction (see Fig. 5.4). The phenomenology of the eclipses

indicates that they are due to gas streaming off the companion. A typical event

starts at orbital phases in the range φ ∼ 0.15÷ 0.20 and ends at orbital phase

φ ∼ 0.35, hence sometimes displaying a slight asymmetry with respect to the

expected nominal center of the eclipse at phase 0.25. At both eclipse ingress and

egress, the pulses usually exhibit excess propagation delays (see Figs. 5.4 and

5.5). The eclipse region covers up to 20% of the entire orbit but, as illustrated in

Fig.5.4, unpredictable irregularities affect both the duration and the appearance

of eclipses. Sometimes the pulsation remains barely visible (see e.g. the case of

Fig. 5.4a), while on other occasions pulses are undetectable for a large portion

of the event (e.g. the cases of Fig. 5.4e). In a favorable case (Fig. 5.4b), it has

been possible to measure a slight reduction of the signal-to-noise ratio of the

pulse (although at the 1σ level only: see caption of Fig. 5.5) as the pulsar signal

crosses the region of interaction with the matter released by the companion.

Pulse broadening and reduction of the signal-to-noise ratio prevent

investigation of the frequency-dependent behavior of the delays in our 256MHz

bandwidth. However, assuming that they are completely due to dispersion in

an ionized gas (as shown for other eclipsing pulsars, e.g. Fruchter et al. 1990;

D’Amico et al. 2001a), the corresponding electron column density variations

∆Ne may represent a first viable explanation of the eclipse phenomenology.

With ∆Ne ∼ 1.5 × 1018 ∆t−3 cm−2 where ∆t−3 is the delay at 1.4 GHz
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Figure 5.4: Observed signal intensity as a function of orbital phase and pulsar phase for five
observations of PSRB centered at 1390 MHz with a bandwidth of 256 MHz. Eclipses are expected to
occur around superior conjunction (phase 0.25). The data are processed in contiguous integrations
of 120 s duration. (a) ∼ 68 min observation starting on 2002 November 27 at 05:41 UT; (b) ∼ 210
min observation starting on 2003 January 26 at 00:01 UT; (c) ∼ 69 min observation starting on
2000 July 21 at 07:54 UT; (d) ∼ 68 min observation starting on 2002 July 10 at 07:12 UT; (e) ∼ 131
min observation starting on 2002 April 29 at 13:52 UT.

in ms, whenever ∆t−3
<∼ 2, which could be the case for the entire events in

Figs. 5.4a and 5.4b, the implied pulse broadening over the receiver bandwidth

∆P−3 = 0.36 ∆t−3 ms is at most 80% of the intrinsic pulse width (∼ 0.50 P

at 10% of the peak). Hence the pulse may be only largely broadened (with an

implied reduction of signal-to-noise ratio), but not disappear completely. On

other occasions, delays may increase much more rapidly, possibly growing well

beyond ∆t−3 = 2. In this case, variations in the dispersion measure would be

able alone to completely smear the signal, causing a total disappearance of the

pulsations.

Alternatively, free-free absorption of the radio-waves in an ionized envelope

of matter released from the companion and expanding adiabatically can explain
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Figure 5.5: Excess group delays of the signal of PSRB, measured on 2003 January
26 (UT time refers to orbital phase 0.25). The observation was centered at 1390
MHz with a bandwidth of 256 MHz and the data are processed in contiguous 360-s
integrations. The error bars are twice the formal uncertainty in the pulse arrival
times. The average value of the s/n within the eclipse region is 4.6± 0.6, whereas it
is 5.7 ± 0.5 (1σ uncertainty) outside.

both the weakening and the total disappearance of the radio signal. The optical

depth for this process can be written (see Spitzer 1978 and Rasio et al. 1989)

as:

τff = 0.74

(

a

1.32 R�

)

(

0.8 R�

RE

)2
(

104K

T

)3/2

∆t2−3 (5.3)

where the orbital separation a and the radius of the eclipse, RE, defined to

be the chord at radius a subtended by the angle between the orbital phase of

eclipse ingress and the orbital phase φ = 0.25, are scaled for PSRB assuming

an orbital inclination of 60◦, T is the temperature of the fully ionized gas and

∆t−3 is the observed delay in milliseconds at the border of the event. Relatively

small delays, ∆t−3
<∼ 0.4, imply only a small reduction in the observed flux

density, τff [∆t−3] <∼ 0.1, whereas ∆t−3
>∼ 1 would be accompanied by significant
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or complete absorption of the signal.

The occurrence of eclipses suggests that the orbital inclination i is not

small. For i = 60◦, the median of all possible inclination angles, and an

assumed pulsar mass of 1.40 M�, Mc = 0.14 M�. For i >∼ 30◦ the companion

mass spans the interval 0.12−0.26 M�, corresponding to a Roche lobe radius in

the range RL = 0.26 − 0.34 R�. Hence, independent of the eclipse mechanism,

the extension of the eclipsing cloud, larger than 0.8 R�, is larger than the

radius of the companion’s Roche lobe and the cloud must be continuously

refilled with matter released from the companion. The plasma density in

the eclipse region is ρE ∼ 1.6 × 10−17 ∆t−3 g cm−3 and, assuming isotropic

emission, mass continuity implies that the donor star loses gas at a rate

Ṁc = 4πR2
EρEvf ∼ 1.0×10−12 ∆t−3 vf,8 M� yr−1, where vf,8 is the wind velocity

at RE in units of 108 cm s−1, which is the order of magnitude of the escape

velocity from the companion’s surface.

If the companion is a helium white dwarf, whose maximum radius is

RWD = 0.04 R� for masses larger than 0.12 M� and for surface temperatures

lower than 104 K, (Driebe et al. 1998), and assuming isotropic emission of the

pulsar flux, a significant fraction f = (4%÷ 20%)× (3.7× 1034erg s−1/Ė) of the

energy deposited onto the companion surface is necessary for releasing matter at

the observed rate, as Ė is the spin-down power of the pulsar and 3.7×1034 erg s−1

its upper limit derived using the arguments of § 5.5. However, the energy

requirements are more easily satisfied for a non-degenerate bloated companion,

as appears to be the case in most eclipsing binary pulsars (Applegate & Shaham

1994). For example, f = (0.04%÷0.2%)×(3.7×1034erg s−1/Ė) for a donor with

the radius of a main-sequence star of the same mass, i.e. 3÷10 times larger than

that of a white dwarf. Mass loss from the donor star can be sustained by ablation

of its loosely bound surface layers by the relativistic wind emitted by the pulsar.

This model has been successfully applied to explain the radio eclipses in close

orbital systems having very light companions, e.g., the cases of PSRB1957+20

(Fruchter et al. 1990) and PSRJ2051−0827 (Stappers et al. 2001). As for these

other systems, the apparent mass-loss rate from the companion to PSRB is

very small; the ablation time scale τabl = χMc/Ṁc = χ140 Gyr, where χ is the

ionized fraction, is longer than the upper limit on the pulsar age (i.e. the cluster

age) unless χ < 0.09.
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Following an alternative interpretation, PSRB binary system may more

resemble that of PSRJ1740−5340, where the effects of the pulsar irradiation

are negligible in triggering the eclipsing wind from the secondary star (D’Amico

et al. 2001a) and the eclipses, or the excess propagation delays sometimes seen

far away the nominal phases of eclipse, are caused by matter overflowing the

Roche lobe of the donor star due to the nuclear evolution of the companion

(Ferraro et al. 2001). In that system, accretion of matter onto the neutron

star is inhibited by the sweeping effect of the pulsar energetic wind, according

to the so-called radio-ejection mechanism (Burderi et al. 2002). PSRB shares

three features with PSRJ1740−5340, namely a companion significantly more

massive than those of PSRB1957+20 and PSRJ2051−0827, the occurrence of

excess propagation delays at 1.4GHz, which are much larger (up to ∼ 1 ms vs

few tens of µs) than those observed in any of the systems having very low mass

companions2, and the presence of irregularities in the eclipses.

PSRB seems anyway to be a twin of PSRJ0024−7204W in 47Tucanae,

with similar values for orbital parameters, the minimum companion mass

(Camilo et al. 2000), and the spin periods, 3.6ms the former and 2.4ms the

latter. Moreover, unlike PSRJ1740−5340 and PSRB1744−24A, both PSRB

and PSRJ0024−7204W reside well within one core radius of the parent cluster

center, and consequently, experience the effects of similar environments.

2A possible exception is the pulsar C in the globular cluster M5 (Ransom, private communication)
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Table 5.1: Timing and derived parameters

Parameter PSR A PSR B PSR C

R.A. (J2000) 17h 01m 12.′′5127(3) 17h 01m 12.′′6704(4) 17h 01m 12.′′8671(4)
Decl.(J2000) −30◦ 06’ 30.′′13(3) −30◦ 06’ 49.′′04(4) −30◦ 06’ 59.′′44(4)
P (ms) 5.2415662378289(16) 3.5938522173305(14) 3.8064243637728(18)

Ṗ −1.3196(9) × 10−19 −3.4978(7) × 10−19 −3.189(11) × 10−20

Epoch (MJD) 52050.0 52050.0 52050.0
DM (cm−3 pc) 115.03(4) 113.44(4) 114.56(7)
PB (days) 3.805948407(16) 0.1445454304(3) 0.2150000713(15)
a sin i (l-s) 3.483724(8) 0.252775(13) 0.192880(12)

e(a) < 4 × 10−6 < 7 × 10−5 < 6 × 10−5

Tasc (MJD) 52048.5627980(15) 52047.2581994(9) 52049.855654(2)
Time Span (MJD) 51714–52773 51714–52773 51714–52773
N. of ToAs 80 74 73
r.m.s. (µs) 21 26 32
S1400 (mJy) 0.4(1) 0.3(1) 0.3(1)
Gal. longitude, l (deg) 353.577 353.573 353.572
Gal. latitude, b (deg) 7.322 7.319 7.316
Mass Function (M�) 0.00313392(2) 0.00082999(13) 0.00016667(3)

Companion mass(b), Mc (M�) > 0.20 > 0.12 > 0.07
L1400 (mJykpc2) 19(7) 14(6) 14(6)
Offset (arcsec) 19.2 1.7 10.5

a The 2σ upper limits on the orbital eccentricities were obtained using the tempo ELL1 model, where Tasc and (e cos ω, e sin ω)
are fitted (Lange et al. 2001). The value given for PSRB is tentative as not all of the orbit is sampled. All the other parameters
are derived using the standard (BT) binary model with e = 0.

b Mc is obtained from the mass function, with Mp = 1.40 M� (Thorsett & Chakrabarty 1999) and i < 90◦. L1400 ≡ S1400d
2. θ⊥

is the angular separation in the plane of the sky between the millisecond pulsars and the center of NGC6266 (Harris 1996,
revision 2003).
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Chapter 6

Timing of pulsars in NGC 6752

Related Paper:

Corongiu, A., D’Amico, N., Possenti, A., Lyne,A.G., Manchester, R.N. and Camilo, F.

Timing of millisecond pulsars in NGC6752 - II. Proper motions of the pulsars in the

cluster outskirts

Submitted to Astrophysical Journal

6.1 The globular cluster NGC6752

NGC6752 is one or the southern globular clusters known to host more than

one millisecond pulsar and regularly observed with the Parkes radio telescope.

Its center of mass is located at celestial coordinates R.A. = 19h10m52.s4,

DEC. = −59◦59′04.′′64 (Ferraro et al. 2003c). Optical observations allowed the

determination of its photometric parameters: its visual magnitude is mv = 5.40

(Harris 1996), its colour excess is E(B−V ) = 0.04 (Ferraro et al. 1999) and its

distance modulus mV − MV = 13.24 ± 0.08 Gratton et al. (2003). From the

above mentioned photometric parameters a distance d = 4.45 ± 0.15 kpc is

obtained. The mass for this cluster is 1.58×105 M� (Sabbi et al. 2004), to which

corresponds a global mass to light ratio 1.21 M�/L�. The mass distribution

is characterised by a core radius rc = 5.′′2 ± 2.′′4 (Ferraro et al. 2003c), and

an escape velocity Vesc ∼ 30 km s−1 from the central region (Colpi et al.

2003). Optical observations also lead to the proper motion and radial velocity

measurement. Its proper motion’s components in celestial coordinates have

the values µα cos δ = −0.84 ± 0.42mas yr−1 and µδ = −2.79 ± 0.45mas yr−1

(Dinescu et al. 1997), to which corresponds a transverse velocity V⊥,GC =

61.5 ± 9.4 km s−1, whereas the radial velocity is Vrad,GC = −32.1 ± 1.5 km s−1

(Dinescu et al. 1997).
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6.2 Pulsars in NGC 6752

The globular cluster NGC6752 is known to host five millisecond pulsars.

The first discovered pulsar, PSRJ1910−5958A (hereafter in this chapter

PSRA, D’Amico et al. 2001), allowed the subsequent discovery of other

four pulsars (D’Amico et al. 2002): PSRJ1910−5959B, PSRJ1910−6000C,

PSRJ1910−5959D and PSRJ1910−5959E (hereafter in this chapter PSRB,

PSRC, PSRD and PSRE respectively).

PSRA (D’Amico et al. 2001) is the only binary millisecond pulsar known in

this cluster. Timing results in D’Amico et al. (2001) indicate a low mass white

dwarf as the most reliable companion for PSRA. This has been confirmed by

Bassa et al. (2003) and Ferraro et al. (2003a), who identified with Hubble Space

Telescope observations the companion of PSRA with a helium white dwarf star,

whose mass is MC ' 0.17 − 0.20 M� and whose photometric properties are

compatible with its belonging to NGC6752. PSRA is the millisecond pulsar

at the highest projected distance from the center of the hosting cluster. Its

angular separation from the center is θ⊥ = 6.′4, which corresponds to ∼ 74 rc

(Ferraro et al. 2003c), and locates this pulsar into a very extreme position in

the outskirts of the cluster.

PSRC (D’Amico et al. 2002) is also located at a remarkable distance from

the cluster center, θ⊥ = 2.′6 equivalent to ∼ 30 core radii. Although this

distance is not as extreme as for PSRA, it is to be considered anyway unusual.

PSRB and PSRE (D’Amico et al. 2002) are located in the central regions

of the cluster. They show unusual large negative values for the spin period

derivative (D’Amico et al. 2002). As any pulsar undergoes a secular slow down

of its rotation, which is reflected in a positive value for the spin period derivative,

the measured negative values for these two pulsars have to be dominated by the

component along the line of sight of the acceleration undergone by the pulsars

in their motion in the gravitational potential, mainly provided by the globular

cluster, where they are located (D’Amico et al. 2002).

PSRD (D’Amico et al. 2002) is also located in the central regions of the

cluster. It shows a positive value for the spin period derivative, which is of the

same order of magnitude of the absolute values for PSRB and PSRE. Hence the

cluster’s gravitational potential well affects the measured spin period derivative
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for PSRD too (D’Amico et al. 2002).

The questions for this cluster are: how has it possible for PSRA and PSRC

to be located so far away from the central regions of the cluster?, and, how

massive are the central regions of the cluster to affect so strongly the spin

period derivatives of the three central pulsars?

6.3 The dynamical structure of NGC 6752

Globular clusters are among the oldest stellar associations in a galaxy. Their

age is high enough to have reached a dynamical equilibrium, which requires that

the heaviest stars are mainly located in the core of the cluster, while the lightest

stars are more likely in farther positions from the center. This mass-hierarchical

structure, known as mass segregation, can be simply understood with the help

of the virial theorem. In a virialized system it may be assumed that all particles

have the same kinetic energy. If all particles have the same mass, this implies

that they also have the same velocity. In a globular cluster, on the contrary,

stars does not all have the same mass, and this implies that the heaviest stars

are slower than the lightest ones and have to be located in a deeper zone of the

cluster’s gravitational potential well.

Neutron stars are massive objects in a globular cluster and, consequently,

it is more likely for them to be located in the cluster core rather than in the

outskirts. This is confirmed by the fact that all other known millisecond pulsars

in globular clusters but very few ones are located within few core radii from the

center of the hosting cluster.

The positions of PSRA and PSRC, respectively θ⊥ = 6.′4 and θ⊥ = 2.′6,

which correspond to 74 rc and 30 rc respectively, are consequently quite peculiar.

Under the hypothesis that they effectively belong to the cluster (hypothesis in

principle questionable and which will be discussed in detail in § 6.7), it is more

likely for them, or their massive progenitors, to have been segregated in the core

of the cluster, like all other objects as massive as they are, during the phase

that brought to the actual dynamical equilibrium, and only in a subsequent

epoch they have been ejected from the core by a propelling object, whose mass

is likely to be significantly higher than that of a single pulsar.

The need for a massive object in the core of NGC6752 is compatible with
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the high central density inferred from the spin period derivatives of the three

central pulsars. Being these quantities mainly determined by the acceleration

component along the line of sight, D’Amico et al. (2001) determined the

minimum core density responsible for their accelerations. Ferraro et al. (2003c)

combined optical observations taken with the Hubble Space Telescope, with

the lower limit for the core density obtained in D’Amico et al. (2001). After

recalculating the center of mass of the cluster, Ferraro et al. (2003c) derived a

firm lower limit for the central mass to luminosity ratio of M/LV
>∼ 5.5. The

lower limit found using PSRD alone, which has the spin period derivative with

the highest amplitude among the three central pulsars, is higher by about the

60%.

Colpi et al. (2002, 2003) examined various scenarios to describe the putative

central ejector. The two most reliable pictures invoke either a single black hole

whose mass is of several hundreds solar masses or a binary system containing

two black holes whose masses are ∼ 10M� and ∼ 50M� respectively. Colpi

et al. (2003) found that the two scenarios can be in principle discriminated via

the measurement of the orbital eccentricity for the [PSRA+WD] binary. In the

single black hole picture an eccentricity e = 10−4 ÷ 10−2 is expected, while in

the latter the expected value is e = 10−6 ÷ 10−5.

The dynamical encounter occurred between the [PSRA+WD] progenitor

and the central ejector may also have triggered the recycling process in the

binary (Bassa et al. 2003; Colpi et al. 2003), which in turn circularised the orbit

and removed any information on the post encounter eccentricity. As results

from the analysis by Colpi et al. (2003), the encounter triggering the recycling

is more likely to have happened if the central binary were a single massive black

hole rather than an intermediate mass binary [BH+BH].

6.4 Observations

The pulsars in the globular cluster NGC6752 have been regularly observed since

September 2000 with the Parkes 64m radio telescope at a central frequency of

1.390GHz. These observations,with a typical integration time of ∼ 2 hrs, have

been carried out with the central beam of the multibeam receiver and the H-

OH receiver. After detection, the signal has been fed to a analogic filterbank
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including 2× 512× 0.5MHz channels, where the factor 2 takes account for the

two linear polarisations. The signals from each channel have been added in

polarisation pairs, integrated and 1-bit digitised at a sampling time of 125µs

(80µs in more recent observations), and recorded to magnetic tapes for off-line

analysis.

Observation archives have been produced with the same procedure

described in § 4.4. Each archive contains 1minute subintegrations covering a

frequency band equal to 1/8 of the total observing band. Pulses times of

arrival (ToAs) have been determined using an high signal-to-noise ratio standard

profile. Because this cluster is affected by strong interstellar scintillation, a

visual inspection of each integrated profile has been done to determine whether

the pulse could be considered detected or not. A cross check on the observed

pulse shape and the ToA uncertainty also allowed to decide how many ToAs

had to be extracted for each pulsar from a single observation.

Pulses times of arrival have been fitted to the appropriate model for each

pulsar with the standard program TEMPO and the DE405 solar system ephemeris

(Standish 1982). To take account for systematic uncertainties, ToAs errors

have been adjusted applying a common multiplication factor, in order to ensure

χ2 = 1. This correction has been applied to each pulsar separately.

6.5 General timing results

Tab. 6.1 displays the measured and derived parameters for all five millisecond

pulsars. The correspondent fit residuals are displayed in Fig. 6.1, jointly with

the adopted standard profiles for ToAs determination.

A first set of timing solutions for these pulsars have already been obtained

by D’Amico et al. (2001). These new solutions, which have been derived using

all observations up to the latest available to date, contain values in agreement

with the corresponding values by D’Amico et al. (2001). Nevertheless the MJD

range covered by the actually available ToAs is ∼ 3.5 times longer than the

range available to D’Amico et al. (2001) and the precision in each parameter

has been consequently improved.

The r.m.s. of the residuals is now lower of a factor of two for all pulsars

but PSRD, whose actual r.m.s. is lower by only a 20%, with respect to the

74



Figure 6.1: Fit residuals (left panels) and pulse profiles (right panels) for all pulsars
in the cluster.

previous solutions. The parameter whose precision has been increased the most

is the spin period derivative Ṗ : for PSRE the uncertainty in this parameter is

now lower by two orders of magnitude, while for all other pulsars of a factor

of ten. The only parameter for which no significant improvement has been

achieved is the dispersion measure, so for each pulsar the values are still the

ones determined by D’Amico et al. (2001).

The number of ToAs available for each pulsar and the fit r.m.s. values

sensibly differ. This has happened for several reasons. For PSRC the r.m.s.

value is much higher than for PSRA, and this comes from the different typical

precision in the ToAs for these two objects. As already explained in § 4.5, the

uncertainty for a ToA is defined as the time shift στ of the standard profile, with

respect to the position given by the best fit of the convolution with the observed

profile, that increases the best fit χ2 value of one unity. This definition makes

στ dependent on the pulse width and means that if two pulsars have pulses

with different widths, the typical ToAs’ uncertainty is higher for the pulsar

with the wider pulse. The pulse width for PSRC is ∼ 9 times larger (at 50%

of the peak) with respect to PSRA and, consequently, ToAs for PSRC have

larger uncertainties than for PSRA. The different ToA’s typical uncertainty
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also affects the r.m.s. values of the fits for these two pulsars, which differ of

about a factor of two.

The r.m.s. values for the other three pulsars, sensibly higher than for

PSRA and PSRC, are due to the lower number of good ToAs collected for

these three objects. As they are faint radio sources (see below and Tab. 6.1 for

comparing the flux densities for each pulsar), the collection of a good ToA is

possible only when the interstellar scintillation enhances their signal above the

sensitivity limit for the telescope apparatus. Unfortunately this happens only

sporadically, and it has more often happened to fail to detect any signature of

the pulses from these pulsars than to collect a good quality ToA for them.

The different levels of precision achieved for these pulsars is the main reason

for the different precision in measuring proper motions, as will be discussed in

detail in § 6.7.

From all available observations it has been calculated the average flux

density S1400 at 1.4GHz. The values have been derived taking account for

the system sensitivity, the observed signal to noise ratio and the position of

the pulsar in the telescope beam with respect to the central position. For

all observations where the pulse has not been detected because of the strong

interstellar scintillation, it has been assumed a flux density equal to half the

detection limit for the used telescope configuration.

6.6 PSRJ1910−5958A orbital parameters

The orbital parameters for PSRA have been determined with a higher precision

than in D’Amico et al. (2001). In particular the eccentricity of the orbit results

now measured, whereas in D’Amico et al. (2001) only an upper limit was found.

Its value e = 3 ± 1 × 10−6 (the quoted error here and everywhere is twice

the nominal TEMPO error) is typical of binary systems hosting fully recycled

millisecond pulsars.

Random encounters between a binary system and a third object are capable

to induce random perturbations in the orbit of the binary. Such encounters are

very rare events for a galactic binary. In a more crowded environment like

a globular cluster a binary system is expected to undergo several encounters

and its orbital eccentricity may be determined by these dynamical interactions
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rather than the binary evolution. Assuming an age of ∼ 1Gyr for the binary

system containing PSRA, it has been calculated the expected eccentricity for

this system as given by the work of Rasio & Heggie (1995), who studied the

orbital perturbations for a binary system in the environment provided by a

globular cluster. The expected values resulted in agreement to the measured

eccentricity for the binary [PSRA+WD], which in turn is also typical for

binaries hosting fully recycled millisecond pulsars.

Unfortunately the measured eccentricity for the binary system does not

allows to discriminate between the natures (single or binary black hole) of

the central propeller. As already explained in § 6.3, the low value of “e” is

compatible with the intermediate mass binary black hole hypothesis, since

the post-encounter eccentricity is expected to be low and it is not affected

by further encounters with lighter stars in the cluster’s environment (Rasio

& Heggie 1995). But the preference for the binary black hole holds only if

PSRA had already been recycled at the epoch of the encounter with the central

propeller responsible for its ejection from the cluster’s core. If this encounter

has been experienced by the binary parent of the observed [PSRA+WD] binary,

the actual orbital eccentricity for the system may be also compatible with the

hypothesis of a dynamical encounter with a high mass single black hole, as

this kind of encounter may have triggered the recycling process that spun up

PSRA, but also turn circularized the orbit and cancelled any signature of the

post encounter eccentricity.

6.7 Proper motions determinations

The main upgrade in the up to date solution with respect to the first published

by D’Amico et al. (2001) consists in the measurement of the proper motions for

the two outermost pulsars, i.e. PSRA and PSRC.

In Tab. 6.1 proper motions values have been reported in two different ways.

The first representation expresses the proper motion as the variation with time

of the celestial coordinates of the moving object, and the related parameters

are indicated with µα cos δ and µδ, which represent the variation with time

of the right ascensionα and of the declination δ respectively. The second

representation expresses the proper motion using a global amplitude, named
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composite proper motion (c.p.m.) and an angle indicating the direction of this

motion in the sky, the position angle (P.A.), which is measured counterclockwise

and defined to be zero when a proper motion is directed towards north.

The proper motion measurement is strictly related to the way pulsar

positions are measured, i.e. using the Römer delay in the solar system, which

depends on both the position of the Earth along its orbit for every single

observation and the pulsar ecliptic coordinates (see § 4.6 and§ 4.7). As the

pulsar is moving on the celestial sphere, all ToAs can be consistently scaled to

the barycenter using a single value for the ecliptic coordinates, only if the data

span is short enough that at the epochs corresponding to the earliest and latest

ToA the positions of the pulsar differ by no more than the typical uncertainties

in the position measurement. If the position shift of the pulsar is significantly

larger than the uncertainties in the position determination, it is possible to use

the predictable behaviour of the Römer delay as a function of time, in order to

fit the ToAs for the shift in time representing the proper motion.

It may be expected to measure proper motions for all five pulsars in

this globular cluster with precision comparable to each other, as their motion

contains a main common contribution given by their belonging to the same

stellar association, and the data span covered by the ToAs for all pulsars is the

same. The reason because this is not the case is that for the three central pulsars

too a low number of good ToAs have been collected so far (see § 6.5). If the

data span is not covered by an adequate number of ToAs, the position results

too poorly constrained by the dataset to obtain a proper motion measurement

definitely not consistent with zero. The different precision in the proper motions

measurements for the two outermost pulsars is due to the different typical ToAs’

precision, which is consequence of the different widths (larger for PSRC) and

of the different shapes (double peaked for PSRC and single peaked for PSRA.)

of the pulses of each pulsar, as already explained in § 6.5.

Fig. 6.2 compares the proper motions for the two outermost pulsars derived

in this timing analysis and the optical cluster’s proper motion given by Dinescu

et al. (1997). The adopted representation draws the expected drifts on the sky

for all objects after the same time (10000 yrs) rescaled in space to a common

starting point. The two pulsars’ proper motions result compatible to each other,

within their uncertainties, but not to the globular cluster motion. This fact is
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Figure 6.2: Comparison among globular clusters’s and PSRA’s and C’s expected
drifts (assuming uniform motion) after 104 years. Each drift is represented by a
line drawn from an ideal common starting point and a box whose amplitude results
from propagating the uncertainty on the proper motion determination. The units
on both right ascension and declination axes are arcmin with respect to the common
starting point. The solid line represents the drift of the cluster center, the dotted
line the drift of PSRA and the dashed line the drift of PSRC.

not usual.

Since the escape velocity from a globular cluster (∼ 30 km s−1 in the case

of the central region of NGC6752, e.g. Colpi et al. 2003) is usually significantly

lower than the typical transverse velocity of these stellar systems (∼ 61 km s−1

for NGC6752 with respect to the solar system, as it results combining the

proper motion measurement by Dinescu et al. 1997 with the distance derived

from the distance modulus in Gratton et al. 2003), it is expected that the first

determination of the proper motion for a pulsar belonging to a cluster mainly

reflects the overall motion of the cluster itself. Only observations extended over

a much longer data span may later reveal the effects of the peculiar (orbital)

motion of the pulsar in the cluster gravitational potential well. For both PSRA

and PSRC this first proper motion determination brings to values that would

already highlight the peculiar motion of these objects inside the cluster potential
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well. This evidence, once combined with the unusual positions for PSRA and

PSRC, may put into question the appartenence of these two pulsars to this

globular cluster.

In order to verify if PSRA and PSRC really belong to the cluster, and

are not field pulsars whose projected positions in the sky are superimposed to

the cluster position, it has been firstly estimated the probability Ppos for two

galactic field millisecond pulsars, with the same characteristics of PSRA and

PSRC, to be discovered at an angular distance of only 5.′3 in the plane of the sky

(this also roughly corresponds to the probability for PSRA to be superposed by

chance to NGC6752, at a distance of 6.′4 off its center). In doing this estimate it

has been used the detection rate for millisecond pulsars of the Parkes Southern

Pulsar Survey (PSPS) at 400 MHz (Lyne et al. 1998), which is the deepest

survey of the entire southern sky to date. Adopting a typical spectral index

α ∼ −1.7 for millisecond pulsars, the flux density at 400 MHz for PSRA

and PSRC is S400 ∼ 2 mJy, about 8 times less than the detection threshold

of the PSPS for sources with spin period, duty cycle, dispersion measure and

celestial coordinates of PSRA and PSRC. In other words it would have been

necessary a survey like the PSPS but about η = 8 times more sensitive (e.g.

using longer integration time and wider total bandwidth) for detecting sources

with the characteristics of PSRA and PSRC. This putative survey would lead

to detect in the southern sky about ηλ more millisecond pulsars than the 19

seen by the PSPS. The exact value of λ depends on various assumptions about

the galactic population of millisecond pulsars, but survey simulations like those

of Toscano et al. (1998) confirm that the adopted λ = 1.5 (the value for a

ideal spherically symmetric and uniform distribution of sources) is a firm upper

limit. It turns out that a survey capable to detect pulsars like PSRA and

PSRC, would have detected < 430 millisecond pulsars in the entire southern

sky and still assuming isotropy1. Consequently the probability for two of them

to have a angular separation ≤ 5.′4 is Ppos ≤ 5 × 10−4.

Proper motions for both PSRA and PSRC are also available, and they can

1Strictly speaking, the hypothesis of isotropy in the distribution of the detected MSP population
may not be applied to a survey as deep as that aforementioned: e.g. Toscano et al. (1998) showed
that a deep survey at 1400 MHz would detected ∼ 40−50% of the millisecond pulsars within ∼ 10◦

from the galactic plane. However, since NGC 6752 is far from the galactic disk (b = −25.6) this
reinforces the fact that the values estimated for Ppos is a solid upper limit.
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provide a further constraint on the probability to find by chance two pulsars

like these. It has been calculated the chance probability Ppm that they are in

agreement within uncertainties. Under the assumption that the distribution of

the observed proper motions derived from the dataset of Hobbs et al. (2005)

reflects the real distribution for such quantity, it has been calculated the

probability for two galactic field pulsars to have proper motions whose difference

is a vector of modulus 2mas yr−1, corresponding to the difference between the

composite proper motions for PSRA and PSRC (including uncertainties). The

resulting value Ppm ∼ 4.5 × 10−2 is a firm upper limit for this probability, as

it does not take into account the amplitude of the composite proper motions

for the two pulsars, but only their difference. This probability has yet to be

lowered by 1/3 to take into account that their orientation in the plane of the

sky, given by the position angles, is in agreement within the uncertainties on

the position angles. Therefore Ppm < 1.5 × 10−2 is a firm upper limit for the

probability that the compatibility of the proper motions of PSRA and PSRC

is due to chance.

In summary the joint probability for the positional and kinematic

characteristics of PSRA and PSRC to be due to chance is Ptot = Ppos×Ppm <

8×10−6. The low value of both Ppos and Ppm strongly supports the association

of the two pulsars to a stellar structure whose angular size constrains the angular

separation between the two sources and whose trajectory in the sky imparts to

the pulsars the same transverse motion.

Assuming now that both PSRA and PSRC belong to the cluster, it has

been investigated why there is a discrepancy between their proper motions and

that of the globular clusters. The cluster’s proper motion has been optically

determined by Dinescu et al. (1997) using two optical observations taken 25

years apart. The positions in one observation have been converted to the system

of the other via a cubic transformation and the relative displacement of the

cluster in one observation with respect to the other has been obtained using as

reference the deep field galaxies. The different method for determining pulsars’

and cluster’s proper motions may be the source of a systematic error in either

determination which leads to the observed discrepancy for NGC6̇752.

A similar discrepancy between pulsars’ and hosting cluster’s proper motions

has already been observed for the globular cluster 47Tucanae. It is to put
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in to evidence that the optical proper motions for NGC6752 and 47Tucanae

have been determined using totally different methods, having the former been

measured using ground based observations (Dinescu et al. 1997) while the latter

using Hipparcos observations. This leads to exclude that the same bias may have

affected both measurements.

Under the hypothesis that both pulsars belong to the cluster and that the

non compatibility of their motions to the cluster’s one is due to the peculiar

motions of the pulsars in the clusters gravitational well and consequently all

proper motions determinations are correct, some considerations would follow.

Fig. 6.3 presents a geometrical representation of the motion in the plane of the

sky (during next 104 yrs) of PSRA, PSRC and of the center of NGC6752, as

derived from their measured proper motions. The relative 2-D velocity vectors

of the pulsars with respect to the cluster center are roughly directed towards the

cluster center itself, as it is indicated in Fig.6.3. In particular, this would mean

that [PSRA+WD] cannot be now in the phase of ejection from the cluster and

that it is not actually at the farthest distance from the globular cluster’s center

along its orbit inside the cluster gravitational well. For d=4.45 kpc (Gratton

et al. 2003) the relative transverse speed of PSRA would be Vrel,A = 57±17 km

s−1. NGC6752 could provide a gravitational pull strong enough to retain PSRA

at its actual location with a peculiar velocity Vrel,A only if the mass enclosed

within the pulsar projected position would be Mencl ≥ 1.54 × 106M�. This is

in contrast to the value for the total mass of the cluster obtained with HST

observation (Sabbi et al. 2004), which is lower by an order of magnitude. Using

again the distance modulus in Gratton et al. (2003), the apparent magnitude

given by Harris (1996) and the colour excess EB−V=0.04 in Ferraro et al. (1999),

the resulting overall mass-to-light ratio would be Mencl/L ≥ 11.8M�/L�, which

is unreasonably high for a globular cluster, unless it is admitted an initial mass

function much flatter than usually estimated (and consequently a very large

number of under-luminous stellar remnants are produced) or the even more

exotic hypothesis of the presence in the cluster of a significant amount of dark

matter.

The optical measurement of the radial velocity of a globular cluster is

usually affected by less uncertainties that its optical proper motion. (in the

case of NGC6752 Vrad = −32.1 ± 1.5 km s−1, Dinescu et al. 1999). Hence
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Figure 6.3: Relative positions and expected drifts (assuming uniform motion) after
104 years for PSRA, PSRC and the center of NGC6752. The units on both right
ascension and declination axes are arcmin calculated from the present position of
the cluster center. Each drift is represented by a line drawn from the actual position
to the expected one. The uncertainty in the expected final positions is described
by a box, whose amplitude is given by the propagation of the errors on the proper
motions in right ascension and declination. The dashed circle represents the present
location of the half-mass radius of the globular cluster.

the determination of the radial velocity of the companion to PSRA, for which

dedicated optical observations are in progress, may help in assessing the motion

of [PSRA+WD] with respect to the cluster center. Finally, a stronger test on

the reliability of the optical proper motion of NGC6752 will be possible once

proper motions for the three central pulsars will be measured as well. This task

will take some years more: simulations show that, with the present accuracy

and collection rate of the ToAs and if the three innermost pulsars have the same

proper motion as PSRA, a 3σ determination will request a total data span of

at least 8−10 years.
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Table 6.1: Measured and derived parameters

Parameter PSRA PSRB PSRC PSRD PSRE
Name J1911–5958A 1910–5959B 1911–6000C 1910–5959D 1910–5959E
R.A. (J2000) 19:11:42.75569(8) 19:10:52.058(2) 19:11:05.5554(8) 19:10:52.417(2) 19:10:52.157(1)
Decl. (J2000) –59:58:26.903(1) –59:59:00.88(2) –60:00:59.702(6) –59:59:05.47(1) –59:59:02.09(1)
µα cos δ (mas yr−1) –3.4(2) – –4(2) – –
µδ (mas yr−1) –3.6(4) – –3(3) – –
C. P. M.a (mas yr−1) 5.0(3) – 5(2) – –
P. A. b(deg) 223(4) – 236(32) – –
P (ms) 3.2661865707906(2) 8.35779850085(1) 5.277326932310(2) 9.035285247760(8) 4.571765939756(4)

Ṗ (s s−1) 2.951(2)×10−21 –7.904(2)×10−19 2.13(3)×10−21 9.644(1)×10−19 –4.3448(6)×10−19

Epoch (MJD) 51920.0000 52000.0000 51910.0000 51910.0000 51910.0000
DM (pc cm−3) 33.61(2) 33.28(8) 33.21(8) 33.32(10) 33.29(10)
Porb (days) 0.8371134770(1) – – – –
a sin i (l-s) 1.2060453(9) – – – –
Tasc (MJD) 51919.2064800(2) – – – –
e 3(1)×10−6 – – – –
ω (deg) 74(12) – – – –
f (Mc) (M�) 0.002687849(6) – – – –
Mc

c,min (M�) 0.168 – – – –

MJD Range 51710–53501 51745–53485 51710–53494 51745–53493 51744–53502
Number of TOAs 357 39 168 104 47
r.m.s. residuals (µs) 4.8 43.1 29.5 46.9 33.5
Offsetd (arcmin) 6.37 0.06 2.56 0.05 0.05
Pulse’s Widthe @10% (ms) 1.22 1.26 2.79 1.10 1.06
Pulse’s Widthe @50% (ms) 0.15 0.56 1.31 0.71 0.55
S1400 (mJy) 0.21 0.05 0.24 0.05 0.07

a Amplitude of the vector representing the proper motion on the celestial sphere.

b Position angle of the composite proper motion vector with respect to the north direction.

c The minimum mass for PSRA’s companion has been calculated assuming a pulsar mass of 1.17 M� and an inclination i for the binary orbital plane
respect to the line of sight of i = 90◦. For a pulsar mass of 1.35 M� and i = 90◦ it is Ma

c,min=0.185 M�.

d The offset of the pulsars have been calculated with respect to the position of the cluster’s center of gravity reported by Ferraro et al. (2003c).

e Indicated percentages refer to the height respect to the peak.
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Chapter 7

The binary pulsar PSR
J1811-1736

Related Paper:

Corongiu, A., Kramer, M., Lyne, A.G., Stappers, B.W., Jessner, A., Possenti, A.,

D’Amico, N. and Löhmer, O.

The binary pulsar PSR J1811−1736: evidence of a low supernova kick.

Submitted to Astronomy & Astrophysics

The pulsar PSRJ1811-1736 has been discovered during the Parkes

Multibeam Pulsar Survey by Lyne et al. (2000a). It has a spin period

P = 104ms and a spin period derivative Ṗ = 9.01 × 10−19 s s−1, the derived

characteristic age and the surface magnetic field result τ = 1.83Gyr and

B0 = 9.8 × 109 G respectively. These parameters are typical of mildly recycled

pulsars. This pulsar is member of a binary system with an orbital period of

PB = 18.8 d and an eccentricity of e = 0.83. As it can be concluded by our

actual understanding of star evolution in binary systems (e.g. Bhattacharya &

van den Heuvel 1991), the companion is more likely to be another neutron star

(see § 3.7). A follow up optical observation of this system (Mignani 2000) failed

to detect any optical emission from the companion. Although this non-detection

cannot be conclusive, it makes even more likely the double neutron star (DNS)

scenario. Another evidence comes from the measure of the relativistic periastron

advance, whose first estimate was already obtained by Lyne et al. (2000a). The

resulting total mass is similar to the value for other DNS systems like the double

pulsar (Burgay et al. 2003; Lyne et al. 2004) and the binary pulsar PSRJ1756-

2251 (Faulkner et al. 2005).

This pulsar obeys the correlation for DNS systems (McLaughlin et al. 2005;

Faulkner et al. 2005) between the pulsar spin period and the orbital eccentricity.
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This correlation has been explained with different durations of the accretion

phase that spun up the pulsar. A numerical simulation by Dewi et al. (2005)

showed that this correlation can be recovered if the second born neutron star

received a low velocity kick in the supernova explosion that interrupted the

accretion phase onto the recycled pulsar. These two facts are both related to

the mass of the donor star. On one side, the higher is the donor mass, the

faster is its evolution and, consequently, the accretion phase lasts less time and

the pulsar is spun up to longer spin periods. On the other side, the higher is

the donor mass, the more is the mass ejected in the supernova explosion and

the higher is the resulting eccentricity. This explanation is not unanimously

accepted. Chaurasia & Bailes (2005) argue that this correlation arises from

observative selection effects, since close highly eccentric binaries coalesce in a

very short time (∼ 100 yrs, Chaurasia & Bailes 2005) and are very unlikely

to be observed. PSRJ1811−1736 has the highest pulsar spin period and the

highest orbital eccentricity among all DNS systems, and the study of this system

performed in this work allows to investigate the Pspin − e correlation in the high

eccentricities regime.

7.1 Telescopes features and ToAs determination

PSRJ1811−1736 has been regularly observed by three among the largest

European telescopes devoted to pulsar timing: the 76m Lovell telescope at

Jodrell Bank (United Kingdom), the 100m telescope at Effelsberg (Germany)

and the 94m equivalent telescope at Westerbork (the Netherlands). The

availability of data sets from pulsar databases of these three observatories has

been possible as a common effort set to establish a collaboration known as

European Pulsar Timing Array (EPTA). In the three following subsections

the basic features of each telescope, the reduction methods and the ToAs

determination are presented.

7.1.1 Effelsberg 100m telescope

The 100m radio telescope at Effelsberg is an observing facility of the Max

Planck Institut für Radioastronomie (Bonn, Germany) and it is the largest fully

steerable single dish telescope in Europe. Observations have been performed
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with a 1.3—1.7 GHz tunable HEMT receiver installed in the primary focus of

the telescope. The noise temperature of this system is 25 K, resulting in a

system temperature from 30 to 50 K on cold sky depending on elevation. The

antenna gain at these frequencies is 1.5 K Jy−1.

The original signal, whose central frequency was at 1410MHz, has been

down-converted to an intermediate frequency (IF) centered at 440MHz for both

left-hand (LHC) and right-hand (RHC) circular polarisations. After down-

conversion the IF signal has been acquired and processed with the Effelsberg-

Berkeley Pulsar Processor (EBPP), which removes the dispersive effects of the

interstellar medium on-line using coherent de-dispersion (Hankins & Rickett

1975). A maximum bandwidth of 2×32×0.7 MHz was available for the chosen

observing frequency and the dispersion measure of the pulsar. This bandwidth

has been split into four main bands, which have been mixed down to baseband.

Each main band has been further sub-divided into eight narrow channels via a

set of digital filters (Backer et al. 1997), and the outputs of each channel have

been fed into de-disperser boards for coherent on-line de-dispersion. In total 64

output signals have been detected and integrated in phase with the predicted

topocentric pulse periods.

Observations have been regularly made since October 1999, at an average

rate of one observation every two months. ToAs have been calculated for each

integrated profile obtained with an integration time of 5−10min. As standard

profile, it has been used a synthetic template constructed by 5 Gaussian

components fitted to a high signal-to-noise ratio observed profile (see Kramer

et al., 1998; 1999).

7.1.2 Jodrell Bank Lovell telescope

Jodrell Bank’s 76m Lovell telescope is an observing facility operated by the

University of Manchester, and it is located about 30 km south of Manchester

City. Its name is on honour of Sir Bernard Lovell, who in the Fifties had the

idea and commissioned the telescope.

All observations have been performed with a cryogenic receiver at

1404MHz, and both LHC and RHC signals have been observed using a

2 × 32 × 1.0-MHz filter bank. After detection, the signals from the two

polarizations have been filtered, digitised at appropriate sampling intervals,
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incoherently de-dispersed in hardware before being folded on-line with the

topocentric pulse period and written to disk. Each integration was typically

of 1-3 minutes duration. Off-line, the profiles were added in polarisation pairs

before being summed to produce a single total-intensity profile.

A typical observation consisted of 6 to 12 of such integrations, being the

number of integration decided in every case after a visual inspection of each

profile and an evaluation of the resulting uncertainty. As standard profile, it

has been used a high signal-to-noise ratio observed profile.

Observations have been regularly made since its discovery in 1997 (Lyne

et al. 2000a), with a typical observing rate of about 2 observations each week.

7.1.3 Westerbork synthesis radio telescope

The Westerbork Synthesis Radio Telescope (WSRT) is an observing facility

operated by the Netherlands Foundation for Research in Astronomy. It is an

array of 14 antennas with a diameter of 25m each. The antennas can be used

either separately or jointly. In the last configuration their response is equivalent

to a single dish telescope with a diameter of 94m.

PSRJ1811−1736 has been observed at a central frequency of 1380 MHz and

a bandwidth of 80 MHz, with the L-band receivers installed in the primary focus

of the telescopes. The noise temperature of this system is 25 K, resulting in a

system temperature from 30 to 50 K on cold sky depending on elevation. The

antenna gain at these frequencies is 1.2 K Jy−1. The two linear polarisations

from all 14 telescopes were added together in phase by taking account of the

relative geometrical and instrumental phase delays between them and then

passed to the PuMa pulsar back-end (Voûte et al. 2002). PuMa has been used

in its digital filterbank mode whereby the Nyquist sampled signals have been

Fourier transformed and the polarisations combined to produce total intensity

(Stokes I) spectra with a total of 512 channels. These spectra have been

summed on-line to give a final sampling time of 409.6 µs, recorded to hard disk

and, subsequently, dedispersed and folded off-line with the topocentric period

to form integrations of a few minutes. TOAs have been calculated for each

profile following a scheme similar to that outlined in § 7.1.1 for Effelsberg data,

exception given for the standard profile, which has been a high signal-to-noise

observed profile.
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Observations have been regularly made since 1999 August 1st, at an

approximate rate of one observation per month.

7.2 Data analysis

The main difficulty in this timing analysis consisted in having data sets from

three different telescopes, and ToAs in each data set have been determined with

standard profiles, differing to each other because of their shape, the position of

their peak (see right-hand panels in Fig. 7.3) and the adopted reference point.

Figure 7.1: Two standard profiles, blue and green, are applied to the same observed
pulse to determine its time of arrival. The different peak position for the two
standards and the different choice for the reference point, t0,I and t0,II bring to
different values for the ToA.

In § 4.5 eq. 4.11 and Fig. 4.3 indicate how ToAs are determined. Fig. 7.1

shows that ToAs depend on the adopted standard profile. Again the red profile

represents the observed pulse, while the green and blue profiles represent two

different standard profiles. According to eq. 4.11, the corresponding ToAs, for

the same observation, result:
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ToAI = ts + t0,I + τI (7.1)

ToAII = ts + t0,II + τII (7.2)

Their difference, consequently, results:

ToAII − ToAI = (t0,II − t0,I) + (τII − τI) (7.3)

In eq. 7.3 the term (t0,II − t0,I) accounts for the different choice for the

reference point, while term (τII − τI) is simply the relative displacement of one

standard profile with respect to the other. Anyway the difference in eq. 7.3 does

not depend on a given observation, but only on the conventional rules with

which the two standard profiles are built. This means that if two ToA sets,

whose observations have been done with the same telescope, are determined

with two different standard profiles, ToAs in one set can be reported to the

other’s standard applying the correction given by eq. 7.3.

If different telescopes have been used to obtain different data sets, ToAs

are also affected by instrumental contributes due to, e.g, different cable lengths

between the receiver and the back-end or different processing times of the back-

ends themselves. Although these instrumental delays cannot be determined a

priori with a precision comparable to that of the contributes due to different

standard profiles, and does not depend on the single observation at a given

frequency, the overall time gaps among the data sets can be fitted with TEMPO,

assuming one of them as reference.

Fig. 7.2 plots the pre-fit residuals for all the three datasets in their joint fit.

Points belonging to the same set are located along a well defined horizontal line

and the vertical shift between these lines represent the overall time gap due to

both the different standard profile and the different telescopes’ instrumentation.

The joint fit for these gaps and other physical parameters may introduce

unwanted covariances. To check if it would have been happened with the

available ToA sets, preliminary fits have been done on each data set singularly

to check if the number of ToAs and the time span of each of them were high

enough to provide a self consistent solution. This check has returned a positive

response for all data sets.
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Figure 7.2: Pre-fit residuals for the three data sets joint fit. The systematic gaps
due to the different standard profiles and to the different instruments are clearly
visible, since the points are located along three different lines.

These single data set fits also allowed to determine the amount of systematic

uncertainties to be added in quadrature to the uncertainties of each ToA. The

values for these systematic uncertainties have been obtained in correspondence

of a χ2 =1 solution. Table. 7.1 reports these systematic uncertainties, the time

span covered by each data set and the fit r.m.s. The fit on Jodrell Bank data

set resulted in a χ2 < 1, indicating that uncertainties in its ToAs have been

probably overestimated. It has been decided to reduce the ToAs uncertainties

applying a correction factor, also determined in correspondence of a χ2 =1

solution.

Table 7.2 summarizes all observed timing and some derived parameters.

For the observed parameters, quoted uncertainties are twice the nominal TEMPO

errors. The resulting χ2 is close to unity, so ToAs uncertainties have not been

further rearranged. For the derived parameters, the given uncertainties are
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Figure 7.3: Left panels:Residuals for Jodrell Bank, Effelsberg and Westerbork single
data set fits. Right panels: standard profiles adopted to determine the ToAs in each
dataset. The different peak positions and the different reference point, not shown,
in each profile resulted in systematic differences among ToAs’ sets.

Table 7.1: Data sets’ characteristics

Jodrell Bank Effelsberg Westerbork

N. of ToAs 348 74 213
Systematic error (µs) − 403.65 643.73
Time Span (MJD) 50842-53624 51490-53624 51391-53546
R.M.S.(µs) 1300 538 659

computed accordingly. The joint fit allowed the determination of spin, positional

and Keplerian orbital parameters plus one post Keplerian parameter with a

precision better than the best determination from single data set fits.

7.3 The nature of the companion

In their discovery paper, Lyne et al. (2000a) already proposed the double

neutron star scenario to describe this binary system. Soon after, Mignani (2000)

reported on a follow-up optical investigation, in order to search for possible

optical emission from the pulsar companion, but no detection was made. While
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Table 7.2: Timing and derived parameters

Parameter Joint data sets

RA (hh:mm:ss) 18:11:55.034(3)
DECL (deg:mm:ss) -17:36:37.7(4)
P (s) 0.1041819547968(4)

Ṗ (10−19 s s−1) 9.01(5)
DM (pc cm−3) 476(5)
a sin i (s) 34.7827(5)
e 0.828011(9)
T0 (MJD) 50875.02452(3)
PB (d) 18.7791691(4)
ω (deg) 127.6577(11)
ω̇ (deg yr−1) 0.0090(2)
S3100 (mJy) 0.34(7)

Time Span (MJD) 50842-53624
N. of ToAs 635
RMS (µs) 851.173

Characteristic Age (109 yr) 1.83
B0 (109 G) 9.80
Total Mass (M�) 2.57(5)
Mass Function (M�) 0.128121(5)
Orbital separation (ls) 94.4(6)
Minimum companion mass (M�) 0.93

Quoted uncertainties are referred to the last significant digit and are twice
mominal TEMPO errors.

not conclusive, the optical non-detection of a star, at a position compatible

with the pulsar’s one, is consistent with the neutron star hypothesis for the

companion.

The eccentricity of this binary system e = 0.828, the third highest observed

to date after PSRJ0514−4002A (e = 0.889 in NGC1851, Freire et al. 2004)

and PSRB1259−63, (e = 0.870 Wang et al. 2004), clearly indicates that a

supernova explosion occurred in this binary system, and no subsequent mass

transfer circularised back the orbit. The main question is: which object in

the actually observed binary system is the remnant of the above mentioned

supernova? The answer is not obvious, since the high eccentricity alone is not

enough for concluding that the companion is a neutron star as well. This fact
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Figure 7.4: Residuals for the joint fit of Jodrell Bank, Effelsberg and Westerbork
data sets.

is witnessed by binary systems like the one hosting PSRJ1141−6545 (Torii &

Slane 2000). The binary evolution of this system can be explained as follows

(Davies et al. 2002). The parent binary contained two main sequence stars, both

not massive enough to undergo a supernova explosion and form a neutron star.

The more massive star, at the end of its main sequence phase, transferred matter

to the companion, which became massive enough to explode as supernova and

leave a neutron star, i.e. exactly PSRJ1141−6545. The originally more massive

star became on the contrary a massive white dwarf. Spin parameters for this

pulsar (P = 394ms, Ṗ = 4.31 × 10−15 s s−1, Torii & Slane 2000) indicate that

this is an ordinary pulsar (τc = 2.9 × 106 yrs) with a magnetic field typical of

ordinary pulsars as well (B = 1.3 × 1012 G).

PSRJ1811−1736 spin parameters indicate, on the contrary, that this is a

mildly recycled pulsar, being its age τc = 1.83×109 yrs and its surface magnetic

field B = 9.8× 109 G. This means that the actual pulsar was already a neutron

star when the supernova occurred and left the actually observed eccentricity.

The pulsar is undoubtedly recycled but not spinning as fast as fully recycled

pulsars, whose spin periods are P <∼ 10ms. This fact in turn implies that the
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accretion phase that spun up the pulsar didn’t last for a long time, as it happens

when the donor star is massive, evolves rapidly and ends its life exploding as a

supernova (for an extended review of binary evolution see, e.g. Bhattacharya

& van den Heuvel 1991).

The precise measurement of the periastron advance brings new elements to

the double neutron star scenario. Using eq. 4.24 it is possible to calculate the

total mass MP +MC from the measured value for ω̇, assuming that the observed

periastron advance is entirely due to general relativistic effects (e.g. Damour &

Deruelle 1986):

MP + MC =
1

T�

(

PB

2π

)5/2
[

ω̇ (1 − e2)

3

]3/2

(7.4)

The resulting value for the total mass is MP + MC = 2.57 ± 0.10 M�.

Although the mass function already provides a lower limit for the companion

mass, according to eq. 4.22, the measurement of the relativistic periastron

advance allows to put a more constraining lower limit on this quantity.

Figure 7.5: Constraints on the masses of the system, as given by the mass function
and ω̇ values. Each point on the plot represents the values of the pulsar (x
coordinate) and companion (y coordinate) masses. The yellow area is excluded
because of the constraint sin i ≤ 1 on the orbital inclination, while the red area is
excluded by the measurement of the relativistic periastron advance.

As explained in § 4.7, the measurement of the mass function determines a
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set of curves in the MP −MC space. Each curve is identified by the inclination

i of the orbital plane with respect to the line of sight. The concave curve in

Fig. 7.5 is identified by i = 90◦, i.e. the true orbit coincides with its projection

onto the plane identified by the line of sight and the line of nodes (cfr. § 4.7,

Fig. 4.6) and it is edge-on observed.

Some simple algebra on eq. 4.21 allows to verify that for any fixed value of

the pulsar mass MP, MC is a decreasing function of i. This means that any curve

identified by i < 90◦ entirely lies above the curve for i = 90◦, which assumes

the role of a reference curve. Consequently any point inside the yellow region in

Fig. 7.5 cannot represent the masses of the two objects. The relation between

the masses of the two stars provided by the measurement of ω̇ is the diagonal

thick line in Fig. 7.5. The two thinner line near it represent the uncertainty in

the total mass. Any point inside the red area cannot represent the masses of

the two objects, because the resulting total mass wouldn’t be consistent, within

the uncertainties, with the value derived from ω̇. The intersection between the

line representing the lower limit for the total mass and the curve from the mass

function identifies the lower limit for the companion mass. For this system it

results MC ≥ 0.93 M�. Being this lower limit an observational constraint, the

companion is without any doubt a massive star, or at least it is not a light white

dwarf as in other binary systems hosting recycled pulsars.

The total mass for this system is relatively low, being it slightly lower than

twice the observed median mass Mmed = 1.35M� (Stairs 2004) for neutron

stars. It is anyway quite close to the total mass for two other double neutron

star systems, PSRJ0737−3039A/B (Mtot = 2.588 ± 0.003 , Lyne et al. 2004)

and PSRJ1756−2251 (Mtot = 2.574 ± 0.003 M�, Faulkner et al. 2005). These

systems have neutron star companions that have the lowest neutron star masses

observed so far, i. e. MC = 1.25 M� and MC = 1.17 M� respectively.

Assuming that a neutron star has a mass MNS ≥ 1.17 M�, i.e. equal or greater

than the lightest neutron star whose mass has been determined with good

enough precision, both objects in PSRJ1811−1736 binary system have masses

in the range 1.17 M� ≤ MP, M rmC ≤ 1.50 M�. This mass range contains all

but the heaviest neutron stars masses for which a reliable determination has

been obtained. Using this mass range for either member, it is also possible to

constrain the inclination of the system in the range 44◦ <∼ i <∼ 50◦.
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Another way to consider the nature of this system is to assume that either

the pulsar or the companion have a mass equal to the observed median value

of 1.35 M� (Stairs 2004). The other neutron star in turn would have a mass

of M = 1.22 ± 0.10 M�. This value is consistent with the lower limit in the

previous discussion, but it also implies the possibility for a neutron star to have

a mass as low as 1.12M�.

7.4 Constraints on the kick velocity of the second

supernova explosion

When a supernova explosion occurs in a binary system, all orbital parameters

undergo a change because of the loss of mass experienced by the exploding star

and the eventual kick imparted to the remnant of the exploded star (see § 7.5).

Observations of a binary system where such an event has occurred allow

to investigate the characteristics of the velocity kick, provided the total mass

of the system before the supernova and the orbital parameters just after the

explosion are known. The pre-supernova mass is in general not known and

it can be constraint only via considerations on the evolution of stars in binary

systems. In the simplest case of double neutron star systems the post-supernova

orbital parameters are not equal to the actually measured values, as general

relativistic effects induce predictable secular changes in both the orbital period

and eccentricity. They can be anyway calculated if the age of the actually

observed binary is known, as the laws of general relativity follow the evolution

with time of the orbital parameters (Damour & Deruelle 1986), and single stars’

evolution does not affect any more the orbital parameters of the system.

In the case of the binary system to which PSRJ1811−1736 belongs, general

relativistic effects on binary parameters are negligible. Assuming for the system

an age equal to the pulsar’s characteristic age τc, the expected values for

the post-supernova orbital parameters result compatible within uncertainties

with the actually measured values. Consequently the post-supernova binary

parameters can be assumed known. Unfortunately an analogous consideration

cannot be done about the pre-supernova binary mass.

The most probable kick velocity can be calculated using the following

assumptions:
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(i) The binary system before the second supernova explosion was circular,

due to the tidal forces during the accretion phase that spun up the pulsar;

(ii) The supernova explosion, i.e. the transition from the [NS-He*] system

to the [NS-NS] system occurs in a time much shorter than any other

time scale in the pre-supernova system. Consequently the transition

between the pre and post-supernova binary parameters can be assumed

instantaneous.

(iii) The orbital separation before the supernova explosion is constrained to

be between the maximum (apocentric) and the minimum (pericentric)

distance between the two neutron stars in the actually observed binary

system;

(iv) The orbital phase of the binary system just after the supernova explosion

is arbitrary;

Assumption (i) is already self explained. During the mass transfer in a

binary system the transfered matter provides strong tidal forces that circularize

the orbit within a very short time after the onset of the mass transfer. Moreover,

even if a putative ellipticity is present, results are not significantly affected

(Kalogera 2000).

Assumption (ii) is not trivial but it can be justified as follows. Let be t0 the

time at which the supernova explodes and the newly born neutron star receives

its kick. The supernova expanding shell needs a time δtcross = d/vshell to reach

the pulsar, where d is the distance between the two stars and vshell is the speed

of the shell. At any time t0 ≤ t ≤ t0 + δtcross the pulsar doesn’t experience any

change in the gravitational field provided by the exploding star, as the shell size

is still smaller than the orbital separation. At t = t0 +δtcross the expanding shell

crosses the pulsar, which experiences a sudden variation in the gravitational

field that regulates its motion. At any time t ≥ t0 + δtcross the contribution

provided by the mass of the expanding shell is no more present, because it

encloses now the entire binary system: the pulsar motion is hence determined

by the mass of the newly formed neutron star, whose motion has been modified

by the kick received at the time t0. So δtcross is the time required by the binary

system to change from its pre-supernova to its post-supernova configuration.
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This time can be estimated assuming that the speed of the expelled matter

is close to the speed of light and the pre-supernova distance between the two

stars is equal to the apocentric distance in the actually observed binary system

a(1 + e) = 95(1 + 0.83) ls ' 174 ls. These assumptions give an estimate

δtcross ∼ 3min for the binary transition to occur. Being the actual orbital

period PB ∼ 18.8 d, which may not differ too much from the pre-supernova

value, the time δtcross results negligible compared to the other time scale.

Assumption (iii) can be justified by noting that the orbital velocities of

the stars and the kick velocity imparted to the newly born neutron star are

much smaller than the speed of the expanding shell, as the former are of order

of 100 km s−1 while the latter can be assumed close to the speed of light, i.e.

three orders of magnitude bigger. This means that the stars have changed their

position of a quantity which is three orders of magnitude smaller than their

separation during the time δtcross, and this is another way to say that their

positions remained unchanged during the transition. This in turn means that

whatever was their distance, it had to be any distance actually assumed by the

two stars in their post-supernova orbital motion.

Assumption (iv) is in part justified by assumption (iii). On one hand in any

elliptical motion the distance between the two orbiting objects is determined

by the orbital phase and vice versa. On the other hand there is no reason for

assuming that a supernova explosion occurs (for the pre supernova binary) and

results (for the post supernova binary) in some favoured orbital phases.

Fig. 7.6 illustrates the assumed binary geometry just before the supernova

explosion. The green circle represents the pulsar’s orbit around the center of

mass of the binary, and the green arrow represents its orbital velocity vector

at the instant the supernova exploded. In blue are displayed the orbit and

the velocity for the companion at the same time. The red arrow represents

a generic asymmetric kick imparted to the newly formed neutron star. The

reference frame1 is centered on the center of mass of the pre-supernova binary

system and it is not rotating. The z-axis contains the two orbiting objects at the

time the supernova explodes and it is oriented towards the pulsar, the y-axis is

aligned to the orbital angular momentum vector and the x-axis is consequently

1This choice hasn’t a particular physical meaning. It makes all calculations simpler than, e.g.,
the usual choice of the z-axis parallel to the angular momentum vector.
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Figure 7.6: Assumed geometry for the orbital plane at the time the supernova
explosion occurred. The circular orbit around the center of mass and the orbital
velocity vector are displayed for the pulsar (green) and the companion (blue). The
red arrow represents a generic kick velocity vector. The x-axis as been chosen parallel
to the pulsar velocity (green vector) at the instant of the supernova explosion.The
y-axis has been chosen parallel to the angular momentum vector (not shown). The
z-axis as been chosen as containing the line passing for the two objects at the instant
of the supernova explosion, pointing towards the pulsar.

on the orbital plane and aligned to the two pre-supernova orbital velocities (due

to the hypothesis of circular motion).

Before the supernova explosion the pulsar and companion orbital velocities

are given by the usual formulas:

VP,preSN =
MC + ME

MTOT

√

GMTOT

R
(7.5)

VC,preSN =
MP

MTOT

√

GMTOT

R
(7.6)

where MP, MC, ME and MTOT = MP+MC+ME are respectively the pulsar
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mass, the companion mass, the ejected mass in the supernova explosion and the

total pre-supernova binary mass, R is the pre SN orbital separation and G is

the gravitational constant.

The supernova explosion does not affect the pulsar velocity, which remains

unchanged, while the newly born neutron star has, after the explosion, a velocity

given by the vector sum of its previous binary velocity and the received kick

velocity ~VK:

~VP,postSN = ~VP,preSN (7.7)

~VC,postSN = ~VC,preSN + ~VK (7.8)

As a consequence of the explosion, the binary system in its new

configuration acquires a velocity ~VB, with respect to the center of mass of the

old system, given by:

~VB =
MC

~VC,postSN + MP
~VP,postSN

MC + MP

=
MC(~VC,preSN + ~VK) + MP

~VP,preSN

MC + MP
(7.9)

and the vectorial orbital velocity ~VP,orb of the pulsar in the new binary

system results as the difference between its orbital velocity in the pre-supernova

binary and the new binary center of mass velocity:

~VP,orb = ~VP,postSN − ~VB =
MC

MC + MP

(~VP,preSN − ~VC,preSN − ~VK) (7.10)

An analogous relation holds for the orbital velocity of the new companion,

but this relation does not provide an equation independent to eq. 7.10.

The new pulsar’s orbital velocity forms an angle ε with respect to the

line containing the two orbiting bodies. As we’re still dealing with the new

configuration of the binary system just after the supernova explosion, such line

is still the same as before the explosion itself. The angle ε is hence given by:

cos ε =
~VP,orb · ~R

VP,orbR
(7.11)
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where the dot indicates the scalar product between two vectors. Eq. 7.10

and 7.11 provide two quantities that can be compared in the actually observed

binary system: the amplitude of the pulsar’s orbital velocity and the angle

between the vectors representing respectively its position with respect to the

binary system’s center of mass and the velocity at that position. In an elliptic

orbit these two quantities are not constant along the orbit, but are functions of

the orbital phase λ:

VP,orb =
MC

MC + MP

√

√

√

√

G(MC + MP)

A(1 − e2)
(1 + e cos λ) (7.12)

cos ε =
e sin λ√

1 + e2 + 2e cos λ
(7.13)

where e is the eccentricity and A is the actual orbital separation. Fig. 7.7

illustrates the adopted definition for the angle ε.

Figure 7.7: Definition of the angle ε between the vector position (red) and the vector
orbital velocity (green) as function of the orbital phase λ in a generic elliptic orbit.
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Using eq. 7.10 with 7.12 and eq. 7.11 with 7.13 it is possible to obtain two

relations that allow to determine the amplitude of the kick velocity. It is first

necessary to rewrite eq. 7.11 and eq. 7.10 in terms of the components of the

vectors in their expressions. According to the choice of the axes, the vectors

~VP,preSN, ~VC,preSN, ~VK and ~R have the following expressions:

~VP,preSN = VP,preSN(1, 0, 0) (7.14)

~VC,preSN = VC,preSN(−1, 0, 0) (7.15)

~VK = VK(cos θ cos φ, cos θ sin φ, sin θ) (7.16)

~R =
A(1 − e2)

1 + e cos λ
(0, 0, 1) (7.17)

where θ and φ are the usual angles in a polar coordinates system. The

amplitude for ~R has been expressed, according to assumption (iii), in terms

of the distance between the two stars in the actually observed binary system

assumed at a generic orbital phase λ. With these substitutions eq. 7.11 and

7.10 become:

V 2
P,orb =

(

MC

MC + MP

)2
[

GMTOT

A(1 − e2)
(1 + e cos λ) + V 2

K

− 2VK

√

GMTOT

A(1 − e2)
(1 + e cos λ) cos θ cos φ

]

(7.18)

cos ε =
~VP,orb · ~R

VP,orbR

= VK sin θ

√

√

√

√

A(1 − e2)

G(MC + MP)(1 + e2 + 2e cos λ)
(7.19)

Equating the right-hand sides of eq. 7.13 and eq. 7.19 the first relation

results:

VK sin θ =

√

√

√

√

G(MC + MP)

A(1 − e2)
e sin λ (7.20)

This equation gives the component of the kick velocity along the z-axis,

and is a function of the mass of the actual binary system, its orbital separation

and the orbital phase of the binary system after the supernova explosion.

103



The second equation comes by substituting the right-hand side of eq. 7.12

in eq. 7.18 and using eq. 7.20 to obtain a quadratic equation for the projection

of the kick velocity onto the x-y plane, VK cos θ:

(VK cos θ)2 − 2 (VK cos θ) cos φ

√

GMTOT

A(1 − e2)
(1 + e cos λ) +

GMTOT

A(1 − e2)
(1 + e cos λ)

− G(MC + MP)

A(1 − e2)
(1 + e cos λ)2 = 0 (7.21)

The solution for Eq. 7.21 is straightforward and leads to the following

expression:

VK cos θ =

√

GMTOT

A(1 − e2)
(1 + e cos λ)

×
{

cos φ ±
√

MC + MP

MTOT
(1 + e cos λ) − sin2 φ

}

(7.22)

Once eq. 7.20 and 7.22 are added in quadrature, the amplitude of the

kick velocity is finally obtained, as function of three parameters: the total

mass MTOT of the pre-supernova binary system, the orbital phase λ of the

newly formed binary system just after the supernova explosion and the angle φ.

Assuming a flat distribution for these three parameters, it is possible to obtain

the resulting distribution for the probabilities of the kick velocity amplitude.

Indeed some constraints have to be imposed on two of these parameters, MTOT

and φ. On the contrary the binary phase λ, as indicated in assumption (iv),

can assume all possible values 0◦ ≤ λ ≤ 360◦.

Timing results allow to know all binary parameters for the binary system

in its post supernova configuration: the orbital period has been directly

measured, the total mass of the system has been derived from the measurement

of the relativistic periastron advance and the true orbital separation comes

straightforward using the former two parameters in Kepler’s third law. The

masses of the two stars separately still miss to this picture and will be available

once a second post-Keplerian parameter will be measured. Anyway the available

informations are enough to derive the distribution for the probability of the

asymmetric kick amplitude.
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MTOT has been constrained using results by Dewi & Pols (2003), who

studied in detail the late stages of binaries that become double neutron stars

systems at the end of their evolution. A comparison between figures 7 and

8 in Dewi & Pols (2003) allows to infer that the companion mass before the

supernova explosion lie in the range 2.8M� ≤ MC,pre−SN ≤ 5.0M�. This result,

combined with the result on the mass range for the pulsar reported in § 7.3 gives

the range 4.0M� ≤ MTOT ≤ 6.5M� for the total mass of the binary system

before the supernova explosion.

Constraints on the angle φ are both algebraic and geometrical. The

algebraic constraint arises imposing that any solution for eq. 7.21 has to be

a real number. This can be simply done by imposing that the square root in

eq. 7.22 is real. The geometrical constraint comes from the definition of VK cos θ.

As it is the projection of a vector onto a plane, its value has to be non-negative,

being its orientation defined by the angle φ itself. The constraints on φ can be

found solving the following set of inequalities:

0 ≤ MC + MP

MTOT

(1 + e cos λ) − sin2 φ (7.23)

0 ≤ cos φ ±
√

MC + MP

MTOT

(1 + e cos λ) − sin2 φ (7.24)

The solution for this set of inequalities is quite easy, but requires a bit of

algebra. The resulting constraints on φ are mainly given by ineq. 7.23 and are:

sin2 φ ≤ MP + MC

MTOT
(1 + e cos λ) (7.25)

The left hand side of ineq. 7.25 assumes values greater than zero for any

choice of the total mass MTOT and the orbital phase λ, so a range of allowed

values for φ is always provided.

Ineq. 7.24 has to be solved in the four cases given by all combination of

signs for both cos φ and the square root in ineq. 7.24:

(i) Case 1: cos φ ≥ 0 and positive value for the square root in ineq. 7.24

In this case VK cos θ is positive in correspondence of any value for the

total mass, the orbital phase and φ, being the latter anyway constrained

by ineq. 7.25.

105



(ii) Case 2: cos φ ≤ 0 and negative value for the square root in ineq. 7.24

This case is opposite to Case 1. Any choice for φ from ineq 7.25 does not

provide a solution.

(iii) Case 3: cos φ ≥ 0 and negative value for the square root in ineq. 7.24

Ineq. 7.24 leads to:

cos λ ≤ 1

e

[

MTOT

MP + MC
− 1

]

(7.26)

This condition is a constraint on the orbital phase for the newly formed

binary just after the supernova explosion. MTOT ≥ 4.7 M� implies

cos λ ≤ α, where α ≥ 1: all orbital phases are allowed. For 4 M� ≤
MTOT ≤ 4.7 M� ineq. 7.26 is an effective constraint onλ.

(iv) Case 4: cos φ ≤ 0 and positive value for the square root in ineq. 7.24

Ineq. 7.24 leads to:

cos λ ≥ 1

e

[

MTOT

MP + MC
− 1

]

(7.27)

Similar to Case 3 this is another constraint on the the orbital phaseλ.

4 M� ≤ MTOT ≤ 4.7 M� ineq. 7.26 implies −1 < 1
e

[

MTOT

MP+MC
− 1

]

≤
cos λ ≤ 1, i.e an effective constraint on λ, but some values are still

allowed, while for MTOT ≥ 4.7 M� the condition VK cos θ ≥ 0 is never

met.

The probability for a given kick velocity VK, has been assumed to be

proportional to the solid angle identified by the direction of the kick velocity

itself:

dP (VK) =
1

N
cos θdθdφ (7.28)

In eq. 7.28 the fraction 1/N is the normalisation factor, and N corresponds

to the solid angle covered by all directions of any possible kick velocity vector ~VK.

Because one of the three free parameters has been chosen to be the orbital phase

λ, to which the angle θ is related via eq. 7.20, eq. 7.28 has been rewritten to
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obtain the probability for VK as function of the three free parameters MTOT, λ

and φ:

dP (VK (MTOT, λ, φ)) =
1

N
cos θ (λ)

dθ

dλ
dλdφ

=
1

N

e

VK

√

√

√

√

G(MC + MP)

A(1 − e2)
cos λdλdφ (7.29)

All calculations have been done numerically as follows.

(i) A value for the total mass MTOT has been picked up from its range

4.0M� ≤ MTOT ≤ 6.5M�.

(ii) For all values 0◦ ≤ λ ≤ 360◦ it has been obtained the allowed range for

the angle φ and the two values for the angle θ.

(iii) For every couple λ, φ it has been calculated the value VK corresponding

to Case 1 of the condition VK cos θ ≥ 0.

(iv) Using 7.29 it has been calculated the probability P (VK (MTOT, λ, φ))

(v) It has been checked if the current value for MTOT allows solutions from

either Case 3 and Case 4 of the condition VK cos θ ≥ 0 and, accordingly,

the corresponding range for λ has been determined using either ineq. 7.26

(Case 3) and ineq. 7.27 (Case 4).

(vi) For all the allowed values for λ obtained in (v) it has been determined

the range of the allowed values of φ.

(vii) For every couple of values for λ and φ satisfying the conditions found in

steps (v) and (vi), other allowed values for the kick velocity have been

calculated and

(viii) the corresponding probability has been calculated as in step (iv).

In this way the map for VK has been obtained as function of the parameters

λ and φ, for any given value for MTOT. All these maps have been then inverted

and integrated to obtain the probability distribution for VK.

Fig. 7.8 shows the cumulative probability for the kick velocity. The green,

blue and red vertical lines have been drawn in correspondence of a kick
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Figure 7.8: Cumulative probability distribution for the kick velocity. The green,
blue and red vertical lines have been drawn in correspondence of values for the kick
velocity of 50 100 and 150 km s−1 respectively.

velocity amplitude of 50 km s−1, 100 km s−1 and 150 km s−1. Fig. 7.9 plots the

same distribution in the range 0 ≤ VK ≤ 200 km s−1. From this plot it

is possible to note that the probability for the velocity kick to have been

higher than 200 km s−1 is lower than 10%. The values for the probabilities

P
(

VK ≤ 50 km s−1
)

, P
(

VK ≤ 100 km s−1
)

and P
(

VK ≤ 150 km s−1
)

are 44%,

71% and 84% respectively, and the median velocity VM, i.e. the velocity for

which P (VK ≤ VM) = 50% is VM = 59 km s−1. The rapid increase of this

distribution, as well as the reported probabilities, clearly indicate that a low

speed kick has more likely occurred than a high speed one.

108



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Figure 7.9: Cumulative probability distribution for the kick velocity in the velocity
range 0 ≤ VK ≤ 200 kms−1. Detail from Fig. 7.8

7.5 The correlation between the spin period and the
orbital eccentricity for double neutron star binary

systems: the role played by PSRJ1811−1736

In all known double neutron star systems a correlation between the spin period

of the recycled pulsar and the orbital eccentricity of the hosting binary system

has been noted (Faulkner et al. 2005; McLaughlin et al. 2005). This relation

has been euristically explained invoking different masses for the donor star.

The argument is the following. Heavier stars evolve faster than lighter

ones, so each phase has a length in time that decreases as the mass increases.

The giant phase that allows a star in a binary to fill its Roche lobe and the

companion to accrete matter also obeys this rule. Let’s consider the Roche

lobe overflow that spins up the neutron star. The higher is the donor’s mass,

the shorter is the accretion phase and, consequently, the longer results the spin

period for the recycled pulsar.
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Figure 7.10: Orbital eccentricity verus pulsar’s spin period plot for the eight double
neutron star systems. The dashed line represents the best fit to the points.
PSRJ1811−1736 is the point close to the upper left corner of the plot. (from
Faulkner et al. 2005)

On the other hand, because the donor star is a high mass star, at the

end of its life it undergoes a supernova explosion. If this explosion occurs

in a binary system, this sudden mass loss induces in the originally circular

binary an eccentricity, whose values is related to the amount of the mass lost

during the explosion. In particular and under the hypothesis of a spherical

symmetric supernova explosion, the higher is the ejected mass, the higher is the

eccentricity. This is in turn related to the mass of the exploding star in the

binary. Roughly speaking, the higher is the mass of the donor star, the higher

is the mass available to be expelled and, consequently, the induced eccentricity

shifts to higher values.

Summarizing this argument, as the initial mass of the donor star increases,

the larger result both the spin period of the recycled pulsar and the induced

eccentricity in the binary system. If now the hypothesis of spherically symmetric

supernova explosions is removed, i.e. it is allowed an asymmetric kick imparted

to the newly formed neutron star, this correlation is expected to be removed
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unless the typical values of the asymmetric kick amplitude are low or at most

comparable with the kick imparted to the whole system in a purely symmetric

explosion.

Indeed the high velocities measured for isolated neutron stars support

that in most supernova explosions the compact remnant receives an additional

asymmetric kick, whose amplitude and direction are basically unpredictable and

whose physical origin is still matter of debate (Lai 2004).

The importance of experiencing a low asymmetric kick for preserving the

Pspin − e correlation has been further highlighted by a population synthesis of

double neutron star systems (Dewi et al. 2005). The authors of this calculation

assumed a Maxwellian distribution of variable dispersion σ for the asymmetric

kick imparted to the younger neutron star. Their simulations show that the

Pspin − e correlation can be maintained only if the dispersion of the Maxwellian

distribution is σ <∼ 50 km s−1.

Among all double neutron star systems, PSRJ1811−1736 is the recycled

pulsar with the longest spin period and the highest orbital eccentricity. This

system hence allows to investigate the Pspin − e correlation in the high

eccentricity regime. Calculations reported in § 7.4 of the probability distribution

for the amplitude of the asymmetric kick show that also for PSRJ1811−1736

the kick imparted to the companion has been probably low.

From these facts we can derive two interesting consequences.

(i) As explained above in this section, the argument used to explain

the Pspin − e correlation is grounded on the assumption that all the pulsars

respecting the correlation have been recycled via a common evolutionary path.

Because of the high orbital separation, it is conceivable that the system hosting

PSRJ1811−1736 has avoided the second phase of Roche lobe overflow and the

pulsar has been recycled via wind driven accretion (Dewi & Pols 2003). Wind

accretion is less efficient in spinning up a neutron star than Roche lobe overflow

accretion, since in the former case only a fraction of the released mass by the

donor is captured by the neutron star, while in the latter (nearly) all the released

mass is transfered into the Roche lobe of the accreting star. If Roche lobe

overflow had been avoided, it would be surprising to observe PSRJ1811−1736

on the Pspin − e correlation. The fact that also this system obeys this correlation

may indeed indicate that its binary evolution has been similar to all other double
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neutron star systems.

(ii) According to the euristic explanation of the Pspin − e correlation, the

progenitor of PSRJ1811−1736 companion is expected to have been a star more

massive than the progenitor star of the second born neutron star in the other

double neutron star systems. Also the progenitor binary is expected to have had

a longer orbital period than the progenitors of the other double neutron star

systems. Hence the result of a low velocity kick in the binary system hosting

PSRJ1811−1736 means that, regardless of details about the star evolution in

binary systems (e.g. initial orbital period, initial masses and so on), neutron

stars that are formed from a massive star evolved in a binary system are more

likely to receive at birth an asymmetric kick whose amplitude is significantly

lower than the one imparted to neutron stars that are formed at the end point

of the evolution of a isolated star of the same mass. Several hypothesis have

been investigated for giving a physical explanation to this fact (e.g. Lai 2004,

Podsiadlowski et al. 2004 and Podsiadlowski et al. 2005).

7.6 Interstellar scattering and pulse broadening

The three right-hand panels in Fig. 7.3 show the shapes of the standard profiles

adopted for each data set. Their shape is broader on the right-hand side of

the pulse peak than on its left-hand side. This asymmetric shape is due to the

effects of the scattering a radio wave undergoes as it travels along the interstellar

medium (Löhmer et al. 2004, and references therein). Fig. 7.11 compares the

pulse shapes at 3GHz (upper panel) and 1.4Ghz (lower panel). Different widths

and shapes are clearly visible: the 3GHz profile is narrower than the 1.4GHz

one, and it is so peaked that scattering effects appear negligible.

Assuming that the pulse shape at 3GHz is entirely unaffected by interstellar

scattering and, consequently, represents the pulse’s true shape, scattering

times have been calculated at 1.284GHz (τs = 16.9ms) and at 1.464GHz

(τs = 10.6ms). The used technique involved a convolution of the 3GHz

profile with an exponential tail, and a comparison with the lower frequency

profiles via a least square fit (see Löhmer et al. 2001 for details). It has been

also determined the spectral index α for the scattering time versus frequency

relation, i.e. τ ∝ ν−α. The obtained value α = 3.5 ± 0.1 is in agreement
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Figure 7.11: Comparison between pulse shapes at 3 GHz (top panel) and 1.4 GHz
(bottom panel), plotted versus the spin phase.

with other analogous measurement (Löhmer et al. 2001, 2004) for a number of

pulsar with very high dispersion measures.

Being PSRJ1811−1736 hugely affected by pulse broadening, its pulsations

cannot be detected at frequencies much lower than 1.4GHz. As an example,

at an observing frequency of 400MHz the scattering time for this pulsar is

τs ∼ 1 s, i.e. an order of magnitude higher than the spin period. This means

that at such a low frequency the pulse becomes much broader than the pulsar

period: adjacent pulses overlap nearly entirely and any evidence of pulsation is

completely smeared.

7.7 High frequency observations

The pulse shape at 1.4GHz has limited the precision for all fitted and derived

parameters. As explained in § 4.5, the ToAs’ uncertainty, given by eq. 4.15, is

the time shift στ of the standard profile, with respect to the position given

by the best fit of the convolution with the observed profile, that increases

the best fit χ2 value of one unity. The broader are the profiles, the higher
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are consequently the uncertainties because the χ2 changes more slowly with

στ . The pulse width at 1.4GHz is 58.3ms, which is more than half period

for this pulsar. Such a large width is responsible for the rather high ToAs’

uncertainties that limited the precision in the actually measured values. This

width cannot be reduced via fully coherent dedispersion (see Hankins & Rickett

1975), which has been already applied to some observations, and this in turn

prevents the measurement, within a reasonably short time, of further post-

Keplerian parameters (e.g. Damour & Taylor 1992).

Assuming a companion mass MC = 1.24 M�, the expected value for the γ

parameter would be γ = 0.021ms. Using simulated data sets with the present

available ToA precision, a 3σ determination of this parameter would take about

4 yrs, but in order to determine the masses of the two objects with a 10%

precision several decades of observations would be needed.

An analogous argument can be applied to the orbital decay and the Shapiro

delay. The expected value for the orbital period derivative and the range of

the Shapiro delay are ṖB = 0.03 × 10−12 s s−1 and r = 6 µs respectively,

again assuming MC = 1.24 M�. These two parameters are unmeasurable, with

the current precision, within a reasonable time. The effects of the geodetic

precession (see e.g. Kramer 1998) are also not measurable within a reasonable

time, as it has a period of order of 105 years!

Observations at higher frequency would allow to manage narrower profiles,

as the interstellar scattering is less efficient in broadening pulses at higher

frequencies. The pulse width at 3GHz is τ = 7.3 µs. With so narrow profiles

the typical ToAs uncertainty would be of only 50µs. New simulations using

ToAs with the latter uncertainty indicate that after a total of only 5 yrs the

measurement of γ would be precise enough to allow the determination of both

masses with a 10% accuracy, while a 3σ determination of the orbital decay

would require about 6 yrs.

The only problem in shifting to observations at higher frequencies is given

by the lower flux than at 1.4GHz. The flux at 3GHz has been determined and

its value results S3100 = 0.34 ± 0.07mJy, which is high enough to allow pulse

detection with a good signal-to-noise ratio within few minutes, using all three

telescopes that provided the data in this analysis. This encouraging results have

already triggered high frequency observations of this pulsar with telescopes in
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the EPTA for which high frequency receivers are available.
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Chapter 8

Summary and conclusions

This thesis summarises a three years work on pulsar timing. Particular attention

has been devoted to few millisecond pulsars in globular clusters and to a recycled

pulsar in a double neutron stars binary system. The most significant results

have been reported in chapters 5, 6 and 7. Here are listed the main outcomes

of this work, which have been presented in detail in each chapter.

8.1 Pulsars in NGC 6266

In the globular cluster NGC6266 six millisecond pulsars have been discovered

to date (D’Amico et al. 2001; Jacoby et al. 2002). All these pulsars are members

of binary systems. It is likely that this fact is not due to chance: the probability

for the first six discovered pulsars to be all binary is less than 2%. This estimate

is based on the assumption that the probability to discover either an isolated or

a binary pulsar reflects the population of millisecond pulsars in globular clusters

observed so far. This in turn means that the aforementioned probability must

be seen as an upper limit, since in general it is easier to discover an isolated

pulsar than a binary one, and in most clusters the ratio between binary and

isolated pulsars in general increases with the time spent in observing the target

and analysing the collected data. The lack of isolated pulsars in this cluster has

consequently to be related with a particular dynamical status of the cluster,

in which the rate of destruction for binary systems hosting a recycled pulsar is

very low.

All three millisecond pulsars for which a timing solution is already available,

namely PSRJ1701−3006A, PSRJ1701−3006B and PSRJ1701−3006C, show a
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negative value for the spin period derivative. Since a pulsar slows down, its

intrinsic spin period derivative is positive. A negative value for this quantity is

interpreted as due to the component, along the line of sight, of the acceleration

that the pulsar undergoes in its motion inside the gravitational potential

provided by the environment where it is located. In the case of the pulsars

in this cluster, the gravitational field is essentially provided by the globular

clusters. Using the measured values for the spin period derivative of these three

pulsars, a lower limit M/L >∼ 1.6 M�/L� is obtained for the mass to light ratio in

the central regions of this cluster, and this value is compatible with the central

mass to light ratio obtained by Pryor & Meylan (1993) via optical observations.

The three millisecond pulsars already timed also show a large range in the

values for their dispersion measure. These variations can be likely ascribed

to variations in the galactic distributions of ionised gas in directions close to

each other towards the cluster: this is also supported by the large reddening

variations observed in optical observations of this cluster (see Minniti et al.

1992). Alternatively, they may be due to the presence of ionised gas inside the

cluster itself, according to a situation similar to that observed in the cluster

47Tucanae (Freire et al. 2001). However in the case of NGC6266, the ionised

gas density inside the cluster would result up to one order of magnitude larger

than the densities proposed for other clusters.

PSR1701-3006B is an eclipsing pulsar. The large typical size of the

eclipsing region indicates that this pulsar is eclipsed by gas streaming

off its binary companion. This binary system shares three features with

another millisecond pulsar in a globular cluster showing long eclipses, namely

PSRJ1740−5340 (D’Amico et al. 2002): a binary companion significantly

more massive than other eclipsing millisecond pulsars in globular clusters, the

occurrence of large propagation delays at the observing frequency of 1.4GHz

and the presence of irregularities in the eclipse. In this case, PSR1701−3006B

would be a new example of a eclipsing millisecond pulsar in which the companion

loses mass due to its internal nuclear evolution, without any contribution from

the pulsar flux. An alternate and favoured interpretation is that the binary

system hosting PSR1701−3006B is similar to PSRJ0024−7204W in 47Tucanae

(Camilo et al. 2000) with which PSR1701−3006B shares the binary parameters,

the spin period and a location very close to the cluster center. In this latter
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case, the mass loss from the companion would be due to the pulsar energetic

flux impinging on it.

8.2 Pulsars in NGC 6752

An up-to-date solution has been obtained for all millisecond pulsars in the

globular cluster NGC6752, using a five years long time span. In this

new solution all previously measured parameters are now determined with a

significantly higher precision with respect to the first determinations reported

in D’Amico et al. (2001). New parameters are also measured, namely the

orbital eccentricity for the binary system hosting PSRJ1910−5958A and

the proper motions for the two outermost pulsars, PSRJ1910−5958A and

PSRJ1911−6000C. The latter result compatible with each other within current

uncertainties.

The largely offset positions of the two pulsars with respect to the cluster

center can put into question their belonging to the cluster. This issue

has been reassessed exploiting also the determination of the pulsar proper

motions. The probability to find by chance two galactic millisecond pulsars

with positional, kinematic and luminosity parameters similar to the ones showed

by PSRJ1910−5958A and PSRJ1911−6000C is of order 10−6, low enough to

enforce the conclusion that these two pulsars are physically associated to the

globular cluster.

Interestingly enough, the proper motions of the two pulsars do not match

with the proper motion of the cluster as derived in the optical band. The

most probable reason for this discrepancy should be found in the difficulties

in determining proper motions in the optical band with enough accuracy. The

alternative hypothesis would be that the discrepancy reflects the motions of

the two pulsars with respect to the cluster as a whole. But this would imply

a mass for the cluster Mencl ≥ 1.54 × 106 M�, which is an order of magnitude

higher than the total mass derived in Sabbi et al. (2004), and a global mass

to light ratio M/L ≥ 11.8 M�/L�. These values are unreasonably high for a

globular cluster, unless very peculiar assumptions on the dynamical structure

of the cluster are taken into account. A further insight on this problem will

be possible once the radial velocity of PSRJ1910−5958A will be measured
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through optical observations, already scheduled, of its already identified binary

companion (Bassa et al. 2003; Ferraro et al. 2003b).

The fact that both PSRJ1910−5958A and PSRJ1911−6000C belong to

the cluster does not solve by itself the problem of their unusual positions, which

may be ascribed to the presence of a central propeller in the cluster responsible

for their ejection from the cluster’s core many hundreds of millions years ago.

Following the arguments in Colpi et al. (2003), the now measured value for the

eccentricity of the binary system hosting PSRJ1910−5958A does not allow to

determine the nature of the central propeller in the cluster core. The main

obstacle in assessing this issue is whether the pulsar had been already recycled

or not at the time of the dynamical encounter that expelled it from the core. If

this encounter happened after the recycling of PSRJ1910−5958A, the observed

eccentricity of e = 3 ± 1 × 10−6 would imply that the central propeller is most

probably a binary black hole of intermediate mass (Colpi et al. 2003). If this

encounter, on the other hand, triggered the recycling of PSRJ1910−5958A, the

more likely model for the central propeller would be the single massive black

hole (Colpi et al. 2003).

8.3 PSR J1811−1736

PSRJ1811−1736 has been regularly observed, since its discovery in 1999, by

three among the largest European telescopes devoted to pulsars’ observations:

the 100m single dish at Effelsberg in Germany, the 76m Lovell telescope at

Jodrell Bank in United Kingdom and the 94m equivalent array at Westerbork

in the Netherlands. A new timing solution has been obtained in this work using

data sets taken with all these three instruments, in the framework of a newly

established collaboration known as European Pulsar Timing Array (EPTA).

The reported timing solution improves on the previously available results

with respect to all spin and Keplerian orbital parameters, and also for the

post-Keplerian parameter known as periastron advance. The measured values

for the spin period and its first derivative are typical of a mildly recycled

neutron star, while the high eccentricity of the binary system can be seen as

the signature of the supernova explosion that interrupted the second Roche

lobe overflow phase from the companion to the accreting neutron star, before
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it could reach spin periods typical of the fully recycled pulsars. This suggested

that PSRJ1811−1736 is a member of a double neutron star binary system. The

improved value for the post-Keplerian periastron advance helps in confirming

this scenario. From its value, the total mass of the system results MTOT =

2.57 ± 0.10 M�, a value which is similar to the total mass of two other double

neutron star systems, namely the double pulsar (Lyne et al. 2004) and the binary

hosting PSRJ1756−2251 (Faulkner et al. 2005), in which the companions of

the recycled pulsars are also very light. Assuming that PSRJ1811−1736 is a

neutron star whose mass value lies in the range identified by the minimum and

the maximum mass so far measured for a neutron star in double neutron star

binaries, we obtain that the companion mass is in fact in the same range. This

argument also leads to a determination of the inclination of the orbital plane

within ∼ 6 degrees: from 44 to 50 degrees.

Under the hypothesis that the binary system hosting PSRJ1811−1736 is

indeed a double neutron star binary it has been investigated the kick velocity

imparted to the second formed neutron star of this system, using the actually

observed binary system as a constraint on the pre-supernova binary parameters

and on the kick vector. Assuming realistic values for the mass of the helium

star that underwent the second supernova explosion and formed the neutron

star companion of the actually observed pulsar, a probability distribution for

the amplitude of the kick has been derived, which indicates that the second born

neutron star received at birth a low velocity kick, less than 60 km s−1 (50%).

There is an increasing amount of evidences that this fact is shared by all double

neutron star binaries (Dewi et al. 2005).

The consistent result found for PSRJ1811−1736 indicates, on one hand,

that this binary is more likely to have undergone an evolutionary path similar

to all other double neutron stars systems, despite the fact that the orbital

separation in PSRJ1811−1736 system is much larger than for all other binaries

of the same class. On the other hand, this supports the emerging hypothesis

that neutron stars formed in binary systems tend to receive an intrinsic kick

whose amplitude is much lower than the one imparted to neutron stars formed

from isolated stars of the same initial mass.

The pulse profile at 1.4GHz shows an asymmetric shape which is typical

of the presence of interstellar scattering along the line of sight. This conclusion
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has been strengthened by comparing the pulse profile at 1.4GHz with the one

at 3.0GHz, which is on the contrary well peaked ad shows no evidence of

interstellar scattering. The index of the power law describing the scattering

time versus frequency relation (Löhmer et al. 2001) is α = 3.5± 0.1, similar to

the values seen in other pulsars characterised by a very high dispersion measure

and showing an anomalous scattering behaviour (Löhmer et al. 2001).

The comparison between the 1.4GHz and 3GHz profiles also leads to the

conclusion that the precision in all timing and derived parameters is actually

limited by the broad pulse at 1.4GHz. Observations at 3GHz would allow the

measurement of a second post-Keplerian, namely the gamma parameter, within

a time span of about 5 years. That will finally allow to directly measure the

masses of the two stars in the system.
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