Go to the first, previous, next, last section, table of contents.
The functions described in this chapter compute numerical derivatives by finite differencing. An adaptive algorithm is used to find the best choice of finite difference and to estimate the error in the derivative. These functions are declared in the header file 'gsl_deriv.h'
The initial value of h is used to estimate an optimal step-size, based on the scaling of the truncation error and round-off error in the derivative calculation. The derivative is computed using a 5-point rule for equally spaced abscissae at x-h, x-h/2, x, x+h/2, x, with an error estimate taken from the difference between the 5-point rule and the corresponding 3-point rule x-h, x, x+h. Note that the value of the function at x does not contribute to the derivative calculation, so only 4-points are actually used.
The initial value of h is used to estimate an optimal step-size, based on the scaling of the truncation error and round-off error in the derivative calculation. The derivative at x is computed using an "open" 4-point rule for equally spaced abscissae at x+h/4, x+h/2, x+3h/4, x+h, with an error estimate taken from the difference between the 4-point rule and the corresponding 2-point rule x+h/2, x+h.
This function is equivalent to calling gsl_deriv_forward
with a
negative step-size.
The following code estimates the derivative of the function
f(x) = x^{3/2}
at x=2 and at x=0. The function f(x) is
undefined for x<0 so the derivative at x=0 is computed
using gsl_deriv_forward
.
#include <stdio.h> #include <gsl/gsl_math.h> #include <gsl/gsl_deriv.h> double f (double x, void * params) { return pow (x, 1.5); } int main (void) { gsl_function F; double result, abserr; F.function = &f; F.params = 0; printf ("f(x) = x^(3/2)\n"); gsl_deriv_central (&F, 2.0, 1e-8, &result, &abserr); printf ("x = 2.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n\n", 1.5 * sqrt(2.0)); gsl_deriv_forward (&F, 0.0, 1e-8, &result, &abserr); printf ("x = 0.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n", 0.0); return 0; }
Here is the output of the program,
$ ./a.out f(x) = x^(3/2) x = 2.0 f'(x) = 2.1213203120 +/- 0.0000004064 exact = 2.1213203436 x = 0.0 f'(x) = 0.0000000160 +/- 0.0000000339 exact = 0.0000000000
The algorithms used by these functions are described in the following sources:
Go to the first, previous, next, last section, table of contents.