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Introduction

Pulsars are fast spinning, highly magnetized neutron stars which are commonly visible in
the radio band of the electromagnetic spectrum. Over the decades after their discovery,
the number of different phenomenological features of these objects have been constantly
increasing, naturally leading to a more and more diversified classification.

In particular, two main classes of pulsars are nowadays recognized. The first is that of
the so-called ordinary pulsars, relatively young objects (aged ∼ 107 yr) which exhibit
spin periods of the order of a second as well as strong magnetic fields of ∼ 1012 G. To
the second class belong the so-called millisecond (or recycled) pulsars, older sources (the
typical age is ∼ 109 yr), whose spin periods are of the order of milliseconds and which show
weaker magnetic fields of ∼ 108 G; most importantly, such pulsars are very often found
in binary systems, suggesting a different evolutionary path with respect to the previous
class. In fact, astronomers now agree in considering recycled pulsars as being spun up
by the transfer of mass and angular momentum from the companion star of the binary
system.

Among the various sub-categories of recycled pulsars, one has recently experienced a ma-
jor re-flourishing of interest, both on theoretical and observational grounds: it is the
class of the eclipsing binary millisecond pulsars. The sources that belong to this class are
systems in which the pulsed radio signal released by the neutron star undergoes substan-
tial modifications, or even completely disappears, periodically, at some particular orbital
phases.

The first example of this class of objects was discovered in 1988 by Andy Fruchter and his
collaborators. The system, named PSR B1957+20, consisted of a millisecond pulsar with
a spin period of ' 1.6 ms (the second fastest known at that time), in a circular orbit with a
very low-mass companion of mass ' 0.02 M� and with a short orbital period of ' 9.17 h.
The pulsar signal resulted eclipsed for about 10% of the orbit, showing pronounced delays
in the arrival times of the pulses, soon before and after its complete disappearance.

With this discovery it was thought to have finally detected the link between the so-called
low-mass X-ray binaries (LMXBs) and the fully recycled binary radio pulsars. The former
were indeed supposed to be the progenitors of the latter. Also, the system suggested a
possible explanation for the existence of isolated recycled pulsars which, according to the
first interpretations, would have resulted from irradiation, ablation and then complete
evaporation of the companion by the pulsar energetic flux. However, as long as new
observations accumulated, the picture became more and more complicated, for at least
two reasons: 1) the observed time scales for the evaporation of the companion appeared
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to be too long (longer than the age of the Universe) for allowing one to conclude that
these systems are the progenitors of isolated recycled pulsars; 2) two classes of eclipsing
pulsars progressively emerged: some of them were similar to PSR B1957+20, displaying
very low-mass companions and some evidence of ongoing ablation; others appeared to have
heavier companion masses ( & 0.1 M�) and showed some clues about spontaneous physical
processes (for instance a Roche lobe filling) which could have provoked the outflow of a
significant fraction of their mass.
At any rate, it was then realized that, in both classes, a cloud of a presumably highly
ionized gas must have formed and with which the pulsar radio signal is now forced to
interact in its travel from the neutron star to the observer.

The paucity of known systems (only 3 in the Galactic field until two years ago plus a
handful in globular clusters, difficult to study due to the large distance of these systems
of stars) left many issues without an adequate justification, among which the three most
important are:

• The physical mechanism underlying the observed eclipses.

• The link between eclipsing binaries and the various kinds of X-ray binaries.

• The link between eclipsing binaries and isolated recycled pulsars.

In the last two years various search experiments have led to the multiplication of the
number of known systems in the Galactic field by a factor of over three and many additional
discoveries are likely underway. This blooming of new eclipsing systems is triggering a new
big burst of interest for this class of pulsars, hopefully paving the way to the possibility of
finally addressing, in a satisfactory way, the three major aforementioned questions.

Given the framework described above, in this thesis work we developed a code (written
in a modern language, like Python is) which allows us to reproduce the main physical
processes which are thought to occur in eclipsing binary systems, in the aim of comparing
the data with the simulated orbital modulated trends of the various possible observables.
The primary goal is to exploit the code in order to put some constraints on the physical
parameters of the considered systems and eclipse mechanisms, indicating the direction
which has to be followed for potential future observations. As examples of the possi-
ble implementations, we applied our code to two systems which differentiate from each
other both for their physical properties and for the phenomenological features which they
display.

The thesis is organized as follows:

• In Chapter 1 we give a general introduction of pulsars, as well as summarizing their
main phenomenological characteristics. We also review the principal theoretical
models which have been put forward to explain the latter. The most widely accepted
evolutionary scenario, that could explain the birth and the great variety of the
observed sources, is then presented, along with a basic classification of the main
kinds of binary systems including a pulsar.

• Chapter 2 is about the standard techniques which are used in studying a pulsar at
radio frequencies. In particular, the timing procedure is the way thanks to which as-
tronomers are able to derive the rotational, positional, kinematic and, if appropriate,
orbital parameters of a pulsar to a very high degree of accuracy. Such information
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are obviously fundamental for any other successive analysis of the source and its
environment.

• Chapter 3 deals with the particular sub-class of systems which we presented above
and which we are going to study: the eclipsing pulsars. The standard picture about
their formation and evolution is reviewed and a further distinction between Black
Widow Pulsars and Redback is also highlighted. We then discuss in detail the eclipse
mechanisms which in principle could be able to account for the observed features.
Finally, we draw our attention to the first eclipsing binary pulsar ever discovered,
which is also considered the archetype of all the objects belonging to its class; in fact,
it manifests most of the phenomenology which we could come across when looking
at other similar systems.

• In Chapter 4, we present the code that we developed in the context of this thesis.
We show its structure, its capabilities of modeling different physical processes as
well as complicated geometrical configurations. In particular, we stress its ability
to fit experimental data, by looking for the combination of parameters which best
reproduces observations. We then test it on a well-known source which, besides
showing features which are typical of eclipsing pulsars, also exhibits a rather high
eccentricity in its orbit, thus representing a very good way for validating our code.

• In Chapter 5 and 6 we consider two real systems which, for different reasons, show
odd behaviors and pose many questions about their physics and origin. We analyze
the data we had and, with the aid of our code, we try to extract precious infor-
mation about the possible eclipse mechanisms and system parameters. Finally, we
suggest, for both of them, the kind of observations that would be useful for further
investigations.



Chapter 1

Pulsars: an overview

The name “Pulsar” stands for “Pulsating Radio Source” and refers to the particular class
of objects we are about to study in this thesis.

The discovery of pulsars dates back to the late 60s. In 1967 a group of astronomers led
by Antony Hewish at the University of Cambridge, UK, were studying scintillation in the
interplanetary medium when his student, Jocelyn Bell, found an interesting phenomenon:
an extremely stable radio signal showing regular pulses separated by 1.33 seconds.
Even though in the beginning they didn’t understand what they were actually observing,
they soon realized that it had to be an extremely compact object, spinning very fast about
its rotation axis. The picture soon became very clear, as many other similar signals were
found over the next few years. Pulsars, as they were then named, were associated with
particular neutron stars (that had been in turn theorized many years before) endowed
with strong magnetic fields that in a way should be responsible for the observed radio
emission.

1.1 The death of a massive star and the birth of a pulsar

As mentioned before, pulsars are essentially a particular kind of neutron stars. They
originate from fairly massive stars (of mass M & 8 M�) which have come to the end of
their lives as supergiants.
Once a star runs out of the “fuel” needed to sustain itself against gravity, the collapse is
inevitable; it then explodes as a supernova, ejecting its envelope out into space forming
a so-called supernova remnant. In fact, it is not by chance that supernova remnants
are often seen to surround isolated pulsars. Conversely, the core of the star collapses,
getting much smaller and denser. Atoms are compressed so much that the inverse β-decay
process,

p+ + e− → n+ νe

is now favored. While neutrinos leave the star undisturbed, protons and electrons fuse
together, bringing about the neutronization of matter. Soon gravity is counteracted by a
new force of quantum nature, i.e. the pressure of a degenerate fermion gas, in this case
made out of neutrons. We now have a very compact but stable object: a neutron star (NS,
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in brief) has formed. The structure of neutron stars has not yet been fully understood,
but it’s very likely to be constituted by an inner core along with other outer shells where
matter arranges itself in different ways. If we could take a cross section of a NS, we would
probably find [45]:

• An inner core where matter can reach densities of as much as ρ > 1015 g cm−3.
Here strange matter could be found. Models cannot predict its actual content yet,
since very few constraints on the equation of state of matter in such conditions are
currently known.

• An outer core with ρ & 2 · 1014 g cm−3. It is chiefly made out of superdense and
superfluid neutrons, as well as some superfluid protons and electrons.

• An inner crust, with 4.3 · 1011 g cm−3 = ρd . ρ . ρn = 2.4 · 1014 g cm−3. Here ρn is
the typical nuclear density and ρd the so-called neutron drip density, beyond which
there are no free bound states available in the nuclei for neutrons and these latter
are compelled to leak out. The layer is actually a mixture of two phases: the first
one is the Proton Rich Matter (PRM) and the second one is a neutron gas (NG). In
addition to them there is an electron gas that guarantees charge neutrality.

• An outer crust, with 106 g cm−3 . ρ . ρd = 4.3 · 1011 g cm−3, where a solid heavy
nuclei lattice coexists with a degenerate electron gas (the main source of pressure in
this layer) in β-decay equilibrium.

• A surface, with ρ . 106 g cm−3. Here there is essentially the electron gas and it is a
place where the magnetic field can play a role both for the equation of state of the
neutron star and for the emission mechanism of a pulsar.

Apart from the equation of state, which is poorly known, we are interested in justifying
some of the features pulsars exhibit. For example we would like to give an explanation to
the extreme speed at which they spin and to their very intense magnetic fields. These are
very easily explained in terms of conservation of angular momentum and magnetic flux
after the supernova explosion. Let us call Ω∗ and Ωp the spin angular frequency of the
progenitor star and of the pulsar, respectively; I∗ and Ip are their moments of inertia, B∗
and Bp their surface magnetic fields, R∗ and Rp their radii. We can write:

I∗Ω∗ = IpΩp ⇔ 2

5
MR2

∗Ω∗ =
2

5
MR2

pΩp ⇒ Ωp = Ω∗
R2
∗

R2
p

(1.1)

where, for the sake of simplicity, we have regarded both the progenitor and the neutron
star as uniform spheres of constant mass M . In the same way, if we consider the magnetic
flux through the surface and assume it to be constant, we get:

B∗ · 4πR2
∗ = Bp · 4πR2

p ⇒ Bp = B∗
R2
∗

R2
p

(1.2)

Since Rp � R∗, this results in Ωp � Ω∗ and Bp � B∗, as we actually observe.
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1.2 Phenomenological features

In this section we are now going to briefly review the principal characteristics of a typical
pulsar, which are evident from observations made through modern radio telescopes.

1.2.1 Pulses

The very regular pulsations visible in the radio band are likely due to the fact that the
signal comes from emission beams located along the magnetic axis; since this latter is
usually tilted with respect to the spin axis, our line of sight can intercept a beam once per
rotation (unless the tilt angle is ∼ 90◦, in which case it can twice) so that we periodically
reveal a rapid increase in the flux density, i.e. a pulse. By measuring the periodicity of
the occurrence of the pulses one can get the spin period. Pulse intensities vary over a
wide range and sometimes pulses are missing. Shapes are quite complex and can exhibit
microstructures on timescales as short as 10 ns.

1.2.2 Periods

Pulsars can be split into two main categories, as we will see later, according to their
rotational periods, magnetic fields and, indirectly, to their history:

• the ordinary pulsars show spin periods of the order of a second (P ∼ 1 s), belong to
a relatively young population (with an age of ∼ 107 yr) and show magnetic fields of
the order of ∼ 1012 G.

• the short-period pulsars (also known as millisecond pulsars or recycled pulsars) are
about one thousand times faster (P ∼ 1 ms) and about 10 to 100 times older (ages
of about 108 ÷ 109 yr) than the previous class. On the other hand they exhibit
significantly lower magnetic fields of ∼ 108÷ 109 G. All of these features are strictly
related to their evolution path, which is quite different from that of ordinary pulsars.

Every time very accurate observations have been performed and special bias effects have
been removed, in most cases pulsar periods were found to increase in a steady way, as
one would expect if the primary source of the electromagnetic emission were, indeed,
the rotational kinetic energy. Period derivatives are of the order of Ṗ ∼ 10−15 s s−1

for ordinary pulsars and Ṗ ∼ 10−18 ÷ 10−20 s s−1 for millisecond pulsars. The former
sometimes also show sudden decreases in their periods (called glitches); the reason why
millisecond pulsars are far less affected by them is linked to their age and their higher
stability (see Section 1.6).

1.2.3 Profiles

It is important to remark that, even if single pulses emerge extremely regularly in time,
they look very different from one to another. Nevertheless, if we take a time series of
some few hundreds or thousands of pulses and coherently add them together (a procedure
called folding) we can obtain an integrated pulse profile whose shape is instead very stable.
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Thanks to this profile each single pulsar can then be identified univocally. The study of
the shape also lets us investigate the size and the structure of the emission beam.

As shown in Figure 1.1, integrated profiles of different pulsars can differ a lot and display
peculiar features, such as complex multi-peaked structures as well as multiple components.
Integrated profiles can also vary significantly both with time and frequency. A change in
the orientation of the beam (for instance because of free precession in isolated neutron
stars and geodetic precession in binary systems) can in fact be responsible for the time
evolution. The dependance on the observing frequency is more evident and present in
almost all pulsars. Specifically, at decreasing frequencies, the pulse shape usually widens
and the different components of the profile get farther apart. Such effects are consistent
with the idea that the higher frequency emission components are produced closer to the
neutron star surface, where the magnetic field lines result almost perpendicular to it, so
that the relative beam gets narrower (see Section 1.5).

Capitolo 3

L’osservazione delle pulsar radio

3.1 Caratteristiche dell’impulso

Le pulsar sono caratterizzate da un’emissione pulsata che osserviamo

prevalentemente nel radio, con uno spettro tipico

S ∝ ν−α (3.1)

con 1 < α < 3 ed un elevato grado di polarizzazione (fino al 90%). Come già si

è detto, esistono osservazioni di pulsar anche in altre bande, tuttavia il profilo

dell’impulso in questi casi è tendenzialmente più instabile, anche a causa del

fatto che l’emissione alle alte energie è solitamente una prerogativa di pulsar

più giovani, ancora soggette ad assestamenti interni (vedi paragrafo 1.5).

Figura 3.1: Esempi di profili di pulsar.

33

Figure 1.1: Different integrated pulse profiles for different pulsars [35].

1.2.4 Emitted Spectrum

Plotting the observed mean flux density Smean against the observing frequency f , it is
easy to note a strong inverse dependance. Approximately we can regard it as a power-law
with a certain spectral index, ξ:

Smean(f) ∝ f ξ (1.3)

Usually, −4 ≤ ξ ≤ 0 with an average observed value of ξ ' −1.8 ± 0.2 [35]. Sometimes
it can be observed a deviation from a power-law at low frequencies, others the spectrum
can be fitted by a double power-law, with different indexes for low (f . 1 GHz) and high
(f & 1 GHz) frequencies. In this case, ordinary and millisecond pulsar do not seem to
show substantial differences.
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1.2.5 Polarization

By now, it is well-known that pulsars are among the most polarized radio sources that
can be find in nature. With the aid of proper instrumentation one can measure the four
Stokes parameters of the incoming radiation. Statistical analyses suggest that pulsar
radiation is about 20% linearly polarized and about 10% circularly polarized, on average
[35]. Moreover, a remarkable feature to inspect is the behavior of the so-called position
angle of linear polarization. Remembering the definitions of the four components of a
Stokes vector,

S0 ≡ I = E2
0,x + E2

0,y (1.4)

S1 ≡ Q = E2
0,x − E2

0,y (1.5)

S2 ≡ U = 2E0,xE0,y cos δ (1.6)

S3 ≡ V = 2E0,xE0,y sin δ (1.7)

where E0,x, E0,y are the two orthogonal components of the electric field and δ is their
relative phase shift, the position angle is defined as follows:

Ψ
.
=

1

2
arctan

(
U

Q

)
(1.8)

The relevant fact is that it usually varies in a smooth and regular fashion along the pulse
phase of an integrated pulse profile, indicating that the magnetic field lines probably play a
role in determining the linear polarization. This interpretation was due to Radhakrishnan
and Cooke, who in 1969 first modeled the phenomenon describing it by their still often
invoked rotating vector model [41]. The typical S-shape of Ψ along the pulse can be seen
in Figure 1.2. Again, millisecond pulsars behave differently, rarely showing regular trends
in their position angles.

0 10 20 30 40
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90
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PSR B0525+21
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Figure 1.2: Left : polarization profile of PSR B0535+21 as observed form the Effelsberg radio
telescope. It is clearly visible the characteristic S-like swing of the position angle (PA) of the linear
component. Right : a representation of the rotating vector model by Radhakrishnan and Cooke,
which explains the S-shape in terms of the projection of the magnetic field line direction onto our
line-of-sight crossing the emission cone [41].
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1.3 Derived physical parameters

One of the most interesting fact about pulsars is that one can get an estimate of many
physical parameters just by looking at some easily-observable quantities: the spin period
P and its first derivative Ṗ . The second derivative P̈ is seldom measured but can provide
us with additional useful information about the emission mechanism.

1.3.1 Dipole radiation, pulsar spin-down and the braking index

In the current most-widely accepted view, pulsars are thought to be fast-rotating stars with
strong, approximately dipolar, magnetic fields whose axes are misaligned with respect to
their rotation axes. As a result, they must emit some radiation, as first proposed Pacini.
In particular, we remind here [29] that a magnetic dipole with a magnetic moment ~m,
tilted by an angle α with respect to the spin axis about which it rotates at an angular
frequency Ω, radiates energy at a rate of:

Ėdipole =
2

3

|~m|2Ω4 sin2 α

c3
(1.9)

From this equation one can see that, for sources like the Crab pulsar (P = 33 ms, B '
4 · 1012 G), the released power is almost 100 times that of the Sun. On the other hand,
the ultimate source of energy of the pulsar is the kinetic energy due to its rotation, whose
rate of loss can be expressed as:

Ėrot ≡ −
d

dt

(
1

2
IΩ2

)
= −IΩΩ̇ = 4π2I

Ṗ

P 3
(1.10)

where I is the moment of inertia, Ω is the spin angular frequency and we have used the
relation P = 2π/Ω.

If we assume the dipole emission to be the only mechanism through which the pulsar loses
energy, we can equate eq. (1.9) to eq. (1.10), thus getting:

Ω̇ = −
(

2|~m|2 sin2 α

3Ic3

)
Ω3 (1.11)

Using the rotational frequency ν = 1/P = Ω/2π and expressing it as a power-law, we can
rewrite the last equation as:

ν̇ = −Kνn (1.12)

where K is a constant and, more importantly, n is called braking index and equals 3 in the
pure dipole case. This law is very useful as it allows us to probe the emission mechanisms.
In fact, we can differentiate eq. (1.12), use it again to get rid of K, to then obtain:

n =
νν̈

ν̇2
(1.13)

Thus, by measuring the period of the pulsar and their two first derivatives, one can look
for deviations from n = 3, which would indicate that other mechanisms, as well as the
dipolar emission, actually come into play.
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1.3.2 Characteristic age

As we said in the previous section, a pulsar usually slows down. By measuring the rate of
loss of rotational speed along with its period, we can also infer how old it is, as shown in
the following. Let us rewrite eq. (1.12) in terms of the period:

Ṗ = K ′P 2−n (1.14)

where K ′ is a new constant that includes the previously defined K. We can then integrate
it assuming n 6= 1: ∫ P

P0

Pn−2dP = K ′
∫ τp

0
dt (1.15)

Here τp is the real age of the pulsar. We have also introduced P0 as the spin period at
birth. Solving, we find:

τp =
P

(n− 1)Ṗ

[
1−

(
P0

P

)n−1]
(1.16)

As one can see, the real age will in general depend both on the braking index (that is,
on the emission mechanism) and on the spin period at birth. Usually, the latter is not
known, but we can be confident of the fact that it had to be much shorter than the
current value, so that we can make the approximation P0 � P ; in addition to this, we can
assume the dominant emission process to be the magnetic dipole, by setting n = 3. In this
way, eq. (1.16) gets far simpler and we can refer to this new particular quantity as the
characteristic age of the pulsar, in the sense that it only gives us the order of magnitude
of the real age:

τc =
P

2Ṗ
(1.17)

Again, by measuring only very simple observables, fundamental information can be ob-
tained. Furthermore, if there exist a way other than measuring the period and its derivative
to compute the age of a pulsar (for example by studying the supernova remnant that sur-
rounds it) one can compare it to the characteristic age in order to determine the braking
index and thus investigate the energetics of the source.

1.3.3 Characteristic magnetic field

We know that the relationship between the magnetic field magnitude and the magnetic
moment in the case of a dipolar field is:

B(r) ≈ |~m|
r3

(1.18)

where r is the distance from the magnetic axis. Assuming the dipole braking as the
only spin-down mechanism, we can take eq. (1.11), solve it for |~m| and express the
magnetic field strength BS at the surface of the pulsar (r = Rp) as a function of measurable
quantities:

BS ≡ B(r = Rp) =

√
3c3

8π2

I

R6
p sin2 α

PṖ (1.19)
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Obviously, we also need to know the moment of inertia as well as the pulsar radius; good
estimates are Rp ≈ 10 km and I ≈ 1045 g cm2. Since we don’t even know the tilt angle, we
can get a lower limit to the field strength by setting α = 90◦, so that we can express:

BS ≈ 1012 G ·
(

Ṗ

10−15

)1/2

·
(
P

s

)1/2

(1.20)

This is what we call the characteristic magnetic field because, again, it can only provide us
with a hint about the order of magnitude of the actual field intensity near the surface.

1.4 The surrounding magnetosphere

Up to now, in trying to explain its emission, we have supposed the pulsar to be in vacuum.
In reality, it was pointed out that, if we regard the neutron star as a highly magnetized,
rotating, superconducting sphere, this hypothesis cannot stand. The strong electric fields
which form, inevitably lead to the extraction of charged particles from the surface, generat-
ing a dense plasma all around the star, that is what we call the pulsar magnetosphere.

The model of magnetosphere we present here is due to Goldreich and Julian [23] and it
is known as the aligned-rotator model, since the basic assumption is that the magnetic
axis is parallel to the rotation axis. Despite this and other features resulting faulty in the
case of magnetized neutron stars, is worth reviewing the Goldreich-Julian model not only
because it embodies the basics on which all the other models are built, but also because it
adapts perfectly to black-hole electrodynamics, for which all the defects of the model do
not apply.

Let us first suppose the pulsar to have an external dipolar magnetic field that is aligned to
the rotation axis about which the pulsar is spinning at an angular frequency Ω in vacuum.
At a distance ~r from its center, we have:

~B(out) = BpR
3

(
cos θ

r3
êr +

sin θ

2r3
êθ

)
(1.21)

where (r, θ) are the usual polar coordinates in a frame centered on the star and Bp the
field strength at the magnetic pole. We want to estimate the forces acting on the surface
charges and understand whether the vacuum condition can be maintained or not.

Since the neutron star is very similar to a conducting sphere, we expect the charges to
move in a way such that, inside the star, the net force acting on them vanishes. Formally,
this results in:

~Ftot = ~E(in) +
~v

c
× ~B(in) = 0 with ~v = ~Ω× ~r (1.22)

Eq. (1.22) says that, underneath the surface, a non-vanishing electric field is present,
namely:

~E(in) =
RΩBp sin θ

c

(
sin θ

2
êr − cos θ êθ

)
(1.23)
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It is also well-known that the tangential component of the electric field, Eθ, is continuous
across the surface of a conductor, and thus:

E
(out)
θ

∣∣∣
(r=R)

= E
(in)
θ

∣∣∣
(r=R)

= −RΩBp
c

sin θ cos θ (1.24)

We can use the Poisson equation, ∇2Φ = 0, outside the star (with the boundary conditions
given by eq. 1.22) and the tangential component of the electric field at the surface (eq.
1.24) in order to get the electrostatic potential Φ:

Eθ = −1

r

(
∂Φ

∂θ

)
⇒ Φ = −ΩBpR

5

3cr3
P2(cos θ) (1.25)

where P2(cos θ) = (3 cos2 θ− 1)/2 is the 2nd-order Legendre polynomial. It can be shown
that this potential generates a quadrupolar electric field configuration outside the neutron
star.

Now we can calculate the component of the electric field parallel to the magnetic field at
the surface, ~E · ~B. The reason why we consider this latter rather than simply the radial
component, Er, is related to the typical order of magnitude of ~B. In fact, in the case of
very strong magnetic fields, the motion of charged particles perpendicularly to the field
lines is strongly suppressed. The Larmor radius in the non-relativistic case gives us an
estimate of the length scale of this motion:

rL =
mevc

eB
= 3 · 10−11 cm ·

(
T

106 K

)1/2

· 1012 G

B
(1.26)

where me is the electron mass, e its charge. It is easy to see how tiny it is even in
the cases of “weak” magnetic fields, proper to recycled pulsars. The force exerted by B
perpendicularly to the field line is so intense that makes the electric field component in
that direction completely negligible. The relevant component is instead:

~E · ~B = −ΩR

c

(
R

r

)7

B2
p cos3 θ (1.27)

Then it must be computed at the surface, to get the electric force Fe, and also be compared
to the gravitational pull Fg:

Fe
Fg
∼ eRΩBp/c

GMpm/R2
(1.28)

If one calculates the ratio for proton (m = mp) and for electrons (m = me) the result
will be huge (> 106) in both cases for the typical parameters of a pulsar. Hence, charged
particles are inevitably ripped off the surface and start filling the surrounding vacuum. A
plasma magnetosphere builds up and a new non-vacuum state is soon attained thanks to
the extracted particles that are forced to rigidly co-rotate with the field lines. However,
the co-rotation can be maintained only up to the distance RLC at which the particle
tangential velocity reaches the speed of light, namely:

RLC =
c

Ω
' 4.77× 104 km ·

(
P

s

)
(1.29)

This distance is called light-cylinder radius and defines a region, cylindrical in shape, which
divides the magnetosphere into two main regions:
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• The closed magnetosphere, where the field lines close inside the light cylinder and
particles can rigidly rotate with them, making the whole region a perfect conductor
just like the interior of the star, and hence ~E · ~B = 0 still holds.

• The open magnetosphere where the field lines should close beyond the light cylinder
but cannot because of the aforementioned reasons. Particles are free to escape and
thus ~E · ~B 6= 0. Here, in this open region, it is believed to originate the radio emission
of pulsars.

1.5 Emission mechanism

In the light of the picture drawn so far, we can try to give a theoretical explanation for
the observed signals coming from pulsars at the different wavelengths. Remember that
the pulsed radio emission (which, still, we do have to take into account) represents only a
minuscule fraction of the total rotational energy converted into radiation.

Considering this, a simple emission mechanism that fits the requirements is the Cone
Beam model, capable of justifying at least the following features:

• Focused emission.

• Constancy of the emitting region size.

• Strong linear polarization independent of frequency.

According to this model, the extracted particles at the surface undergo such a strong
acceleration along the magnetic field lines that they rapidly become relativistic. The ~B-
field geometry gives rise to the emission of curvature radiation, with photons γ whose
energy Eγ exceeds the rest mass of two electrons; therefore they soon decay in e+ e−

pairs which are accelerated again in an upper layer of the magnetosphere. New photons,
which soon after decay in pairs, are then produced and so on, until the energy of single
photons is enough to sustain the process (that is Eγ > 2mec

2). The radiation is in
this way directed tangentially to the field line at the point of the emission, resulting in
extremely collimated and linearly polarized beams. Successive generations of e+ e− pairs
and subsequent photons are less and less energetic and are produced farther and farther
away from the surface, where the tangents to the field are less parallel to the magnetic axis.
This represents a way to explain the narrower pulses observed at higher radio frequencies
as well as the large bandwidth of the radio signal itself. Other possible theories for the
radio emission have been proposed, locating the region of acceleration of the emitting
particles also in other portions of the magnetosphere.

The recent results from the new γ-ray satellites like AGILE and Fermi seem to indicate
that the gamma-ray emission (which is seen in more than a hundred radio pulsars) more
frequently originates from the so-called outer gap region, a part of the magnetosphere
in the neighborhood of the light cylinder. In fact, particles at distance ∼ RLC in the
equatorial plane approach the speed of light; thus, they must be highly relativistic and
produce high-frequency radiation.
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Figure 1.3: Sketch of the Goldreich-Julian model of the magnetosphere of a pulsar, in the picture
of an aligned magnetic field axis.

Figure 1.4: Sketch of the basic geometrical model of the magnetosphere of a pulsar.
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1.6 Evolution and classification

Once we have depicted the principal aspects of the physics governing a pulsar, we are
ready to predict its evolution over time; it is a common practice to represent it on a P − Ṗ
(or, equivalently, P −B) diagram, like that of Figure 1.5.

che diventa

B ≈ 3.2 · 1019

√
P Ṗ G (1.16)

assumendo valori medi per le stelle di neutroni: I = 1045 g cm2, R = 10 km

e sin α = 1

Figura 1.5: Il diagramma P − Ṗ per il campione a tutt’oggi noto di radio pulsar.
Evidenziate con un cerchio sono le pulsar che si ritengono appartenere a sistemi
binari con orbita poco eccentrica, mentre un’ellisse rappresenta le pulsar in sistemi
binari con orbita ellittica. Come si nota, esistono più linee della morte ed esistono
alcune pulsar al di sotto di queste linee.

Possiamo dunque rappresentare l’evoluzione della pulsar attraverso un

diagramma P - B (o l’equivalente diagramma P − Ṗ ). Nel diagramma, come

si osserva in figura 1.5, sono evidenziate linee di isoetà per le pulsar. Le pulsar

giovani si osservano nella regione in alto a sinistra del diagramma.

La maggior parte delle pulsar che osserviamo sono però pulsar più lente,

con valori di campo magnetico simili a quelli delle pulsar più giovani. Esiste poi

una regione del diagramma al di sotto della quale non si osservano più pulsar: è

la cosiddetta valle della morte. Non è possibile individuare con precisione una

linea della morte al di sotto della quale non si trovano più pulsar attive in radio.

9

Figure 1.5: In a P−Ṗ diagram, the two populations of ordinary and millisecond pulsar distinctively
separate into different regions.

When a pulsar is first generated from the explosion of a supernova, it is placed on the
upper-left part of the graph, having quite a strong magnetic field (and hence, a high Ṗ )
as well as a spin period of the order of tens of milliseconds. Being its rotation the only
source of energy, a pulsar can only slow down. In fact eq. (1.12) tells us that, no matter
the actual emission mechanism, its period P must increase, corresponding to a horizontal
rightward shift on the diagram. The shift continues until the magnetic field and rotational
speed are not able to sustain the pulsed radio emission any more; when this happens the
pulsar crosses the so-called death line, beyond which, even if still emitting, the source
cannot be observed because of its faintness. It is important to note that this line strongly
depends on the assumed emission mechanism, even if most models are substantially in
accord in describing it. The fact that most of the observed pulsar (as one can see in
Figure 1.5) cluster in the vicinity of the death line is related to the fact that the horizontal
shift normally occurs over very short time scales; young pulsars boast very strong magnetic
fields and short periods, so that the spin-down is quite rapid. Consequently, the probability
of spotting new-born sources is rather low and that explains the issue. Moreover, young
pulsars are also fairly unstable and often show sudden decreases in their periods (the above-
cited phenomena known as glitches) whose origin is very likely linked to “star-quakes”,
namely re-arrangements of the neutron star crust which abruptly change the moment of
inertia and, thus, the spin frequency.
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1.6.1 Spin-up to millisecond periods

It is well-know that, in general, stars tend to couple. Almost half of the observed stars
turn out to be in a binary system with a companion. Analogously, it is very common
to have pulsars that were formed in a binary system, previously composed by two main-
sequence stars. The evolution of such sources basically depend on the initial masses of the
two components. When one of the two stars explodes as a supernova, two main paths can
then be followed:

• Disruption From considerations related to the Virial Theorem it can be proved that,
in ideal conditions, if more than half the total mass of the whole system is ejected
out of the binary, this latter will be disrupted. If the explosion is slightly asymmetric
(as usually occurs), a “kick” to the pulsar will be imparted, flinging it away at high
velocity (10÷ 1000 km/s). The source will be later observed as an isolated ordinary
pulsar, evolving in the previously explained standard fashion.

• Survival If the new-born pulsar and the main-sequence star remain tied to each other,
the system will initially show a high eccentricity due to the effect of the explosion. For
a while the pulsar may be visible as an ordinary one, with the usual characteristics we
have already discussed. But, later, the main-sequence star evolves itself becoming,
for instance, a giant; such a star, in the vicinity of a compact object, will likely
transfer part of its mass to the neutron star, either via its strong wind or by filling
its Roche-lobe, allowing the outflowing of matter through the inner Lagrangian point
L2. The accretion makes the pulsar acquire spin angular momentum at the expense
of the orbital one, in a process that is called pulsar recycling. While accretion is
ongoing, the system can be observed as an X-ray binary, whose name is obviously due
to the fact that they are primarily detectable at X-rays, since most of the emission
occurs in that band of the electromagnetic spectrum. The in-falling matter on the
neutron star provokes both an acceleration in its rotation and a decay in its magnetic
field. For this reason the source will progressively move toward the bottom-left part
of the P − Ṗ diagram, where indeed most of the observed millisecond pulsars can be
found.

1.6.2 X-ray binaries

Let us focus on the new class we have just introduced, i.e. X-ray binaries. Such accretion-
powered systems are further divided into subcategories, according to the mass of the donor
star.

• High-Mass X-ray Binaries (HMXBs) are characterized by companions of mass Mc &
10 M� belonging to the O-B-Be spectral type and hence they are very young systems
(age < 107 yr). The spin-up of the pulsar occurs by wind-driven accretion or through
a Roche lobe overflow of the companion atmosphere. They usually have rather long
orbital periods (tens or hundreds of days) with fairly eccentric orbits. The typical
end product, in the case of survival of such a system after the supernova explosion
of the donor star, is a double neutron star binary (Figure 1.7, case D).

• Intermediate-Mass X-ray Binaries (IMXBs) are those system in which 1 M� .Mc .
10 M� [56]. The typical spin periods of pulsars coming from such systems are of the



CHAPTER 1. PULSARS: AN OVERVIEW 20

order of tens of milliseconds, suggesting that in IMXBs the recycling process lasts
less than in the next category [47]. These sources are called mildly-recycled pulsars.

• Low-Mass X-ray Binaries (LMXBs) have faint optical companions with 0.1 M� .
Mc . 1 M� associated with old population II, G-K spectral type, stars. This feature
makes these systems much older than HMXBs, with ages of over 109 yr, allowing
their pulsars to be recycled for a far longer time and to be spun-up to millisecond
periods. Consequently, the typical measured magnetic fields are weak, ∼ 108 ÷ 109

G. Since the small mass prevents the donor from developing a strong equatorial
wind, the principal accretion mechanism is the Roche lobe overflow. Tidal forces
and magnetic torques during accretion have enough time to circularize the orbit
and make the system lose additional angular momentum. Hence, LMXBs usually
have much shorter orbital periods (∼ 1 d) and very small eccentricities. Once the
recycling is complete, the donor has lost its outer shells and has become a He or C-O
white dwarf, depending on the initial mass.

• Very Low-Mass X-ray Binaries (VLXBs) exhibit companions of mass Mc . 0.1 M�
which probably powered accretion of matter for even longer periods of time. This
class thus includes the progenitors of the most heavily recycled pulsars ever discov-
ered; this statement is confirmed by the observed spin periods of the pulsars hosted
in such systems, which are at most ' 5 ms [20]. Their extremely tight orbits, with
periods of the order of hours, make some of them show radio signal eclipses while
the pulsar passes behind the companion, indicating that the latter is bloated or is
evaporating because of the pulsar radiation [47].

At the end of the accretion process, each of these kind of binaries will stop emitting X-rays
and will turn on again its radio emission, becoming visible as a recycled pulsar.

1.7 Population distributions

As of 2012, more than 2000 pulsars are known1, with more than a half spotted in the last
10 years, especially thanks to the recent all-sky surveys, such as that performed at Parkes.
All the pulsars discovered so far (with the exception of a handful of objects spotted in
the Magellanic Clouds) have turned out to be of Galactic origin and this is proved both
because most of them are crowded in the plane of the Milky Way and because their dis-
persion measures nicely fit the current models of the Galactic ionized matter distribution.
The two populations of ordinary and millisecond pulsars, have substantially different spa-
tial distributions. The former are concentrated in the Galactic plane, mimicking the
distribution of the most massive O-B stars and, thus, confirming their supposed origin
from supernova explosions. The latter instead spread out across higher Galactic latitudes,
supporting the hypothesis of the “supernova kicks” which, during the long life of such
sources, have let them go away to greater distances. Many of the binary millisecond pul-
sars have also been found in globular clusters. As we will see, they play a significant role in
the formation of Very Low-Mass Systems, those from which most of the eclipsing pulsars
originate.

1http://www.atnf.csiro.au/people/pulsar/psrcat/
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2 D.R. Lorimer

Fig. 1.1 Left: the distribution of pulsars in Galactic coordinates. Pulsar–supernova remnant asso-
ciations and millisecond pulsars are shown by the filled and open circles respectively. Right: pul-
sar proper motions in Galactic coordinates (after [23]). The solid lines show the proper motion
(neglecting the unknown radial velocity) over the last million years

population syntheses indicate that the two populations are consistent with the idea
that all neutron stars share the same velocity distribution. The millisecond pulsars
represent those binary systems which have survived and have necessarily smaller
space velocities as a result [62].

The observed emission from radio pulsars takes place at the expense of the rota-
tional kinetic energy of the neutron star. As a result, in addition to observing the
pulsar’s spin period, P, we also observe the corresponding rate of spin-down, Ṗ.
Such measurements give us unique insights into the spin evolution of neutron stars
and are summarized on the P–Ṗ diagram shown in Fig. 1.2. The diagram contrasts
the normal pulsars (P ∼ 0.5 s and Ṗ ∼ 10−15 s s−1 which populate the “island” of
points) and the millisecond pulsars (P ∼ 3 ms and Ṗ ∼ 10−20 s s−1 which occupy
the lower left part of the diagram).

The differences in P and Ṗ imply fundamentally different ages and magnetic field
strengths for the two populations. Assuming the spin evolution of the neutron star to
be a due to magnetic dipole radiation, we can make rough estimates of the inferred
age τ ∝ P/Ṗ and magnetic field strength B ∝ (PṖ)1/2. Lines of constant B and τ are
drawn on Fig. 1.2 from which we infer typical magnetic fields and ages of 1012 G
and 107 yr for the normal pulsars, and 108 G and 109 yr for the millisecond pulsars.
The rate of loss of rotational kinetic energy Ė ∝ Ṗ/P3 (also known as the “spin-
down luminosity”) is also indicated. As expected, these are highest for the young
and millisecond pulsars.

In addition to spin behaviour, a very important additional difference between nor-
mal and millisecond pulsars is binarity. Orbiting companions are observed around
about 80% of all millisecond pulsars but less than 1% of all normal pulsars. The
companions are either white dwarfs, main sequence stars, or other neutron stars. Pul-
sars with low-mass companions (<0.5 M# – predominantly white dwarfs) usually
have millisecond spin periods and essentially circular orbits with orbital eccentric-
ities in the range 10−5 < e < 10−1. Measurements of white-dwarf “cooling ages”
(see [65]) agree generally with millisecond pulsar characteristic ages and support
the idea that these binary systems have typical ages of a few Gyr. Binary pulsars
with high-mass companions (>1 M# – neutron stars or main sequence stars) have
larger spin periods (>20 ms) and are in more eccentric orbits: 0.1 < e < 0.9.

Figure 1.6: The distribution of pulsars in Galactic coordinates. Pulsar–Supernova Remnant associ-
ations and millisecond pulsars are represented by the filled and open circles, respectively. Ordinary
pulsars are shown as simple dots.

thought to have a !nely tuned evolutionary
history in which the initially more massive
star lost a large amount of mass and formed a
white dwarf while its initially less massive
companion accreted enough mass that its core
was nudged over the Chandrasekhar limit and
eventually underwent a supernova explosion
and formed a pulsar (59) (path C in Fig. 1).

The formation of double-neutron-star bina-
ries is reasonably well understood in terms of
high-mass x-ray binary systems (HMXBs),
which undergo common-envelope evolution as
the slower evolving star becomes a giant. The
spiral-in and envelope loss may result in a tight
binary with a helium star over"owing its Roche
lobe (60). The subsequent supernova explosion

then leaves two neutron stars in an eccentric
orbit (path D in Fig. 1). The formation of the
“planet pulsar” system B1257 12 with planets
with commensurate orbital periods (61) remains
an open question, as does the (possibly related)
destruction of the companions that spun up the
isolated millisecond pulsars; none of the ob-
served eclipsing pulsars (62) are ablating their
low-mass companions quickly enough to be
progenitors o! solated millisecond pulsars.

Understanding the Population
The di#erent observed binary pulsar systems
can constrain theoretical models of the evo-
lution of the overall population with time.
Recent attempts at synthesis of one or more

components of the global population of bina-
ry pulsars and x-ray binaries (63, 64, 65, 66)
evolve hundreds of thousands of systems and
include more and more detailed descriptions
of the evolutionary processes, varying such
parameters as supernova kick magnitudes,
stellar compositions and wind velocities, x-
ray irradiation of the secondary star during
the x-ray binary phase, common-envelope
ejection e$ciencies, and the amounts of
mass lost from the system and accreted by the
neutron star. These codes can match some of
the numbers and types of observed systems,
but often there is still degeneracy among the
allowed input parameters and/or an inability
to produce the correct relative numbers of
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Figure 1.7: Schematic representation of some possible evolutionary paths of binary systems. Cred-
its: [47].



Chapter 2

Observing a pulsar

All the information we can get about a pulsar comes from its pulsating signal at vari-
ous radio frequencies. It is then straightforward to understand the relevance of properly
handling these data. In all cases the raw signal we receive is not suitable for a direct
analysis and must be pre-processed (an operation that we call data reduction) in order
to make it usable. In this chapter we will review the principal effects that influence the
pulsar radiation and that one must take into account when dealing with data. We will
then explain the basic concepts of timing, the primary way by which astronomers study
pulsars and determine their physical and orbital parameters.

2.1 Plasma effects on propagating waves

Before reaching the observer, the radio wave emitted by a pulsar must travel a very long
distance, often of the order of kiloparsecs or more. Along its path it comes across the
interstellar medium (ISM), which is present all over the Galaxy. The ionized component
of the ISM influences the propagation of the signal, modifying its shape and flux. The
Galactic magnetic field also makes the ISM slightly magnetized and this causes changes
in polarization of traveling electromagnetic waves. The most relevant effects are thus the
following:

1. Dispersion

2. Faraday Rotation

3. Scattering

4. Scintillation

While effects (1) and (2) are effective in a homogeneous plasma, effects (3) and (4) require
the plasma to be inhomogeneous and/or turbulent.

22
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2.1.1 Dispersion

Let us consider a cold homogeneous medium made of charged particles, i.e. electrons and
nuclei. In the presence of an electromagnetic wave, the electrons will undergo a net force
~F = −e ~E. Calling ω the pulsation of the radiation, k the wavenumber, the electric field

can be expressed as ~E(t) = ~E0e
i(~k·~x−ωt). Being me the electron mass, we can find the

velocity ~v of the electron as a function of time by a simple integration:

~F = me
d~v

dt
= −e ~E ⇒ me

∫
d~v = −e

∫
~E0e

i(~k·~x−ωt)dt

⇒ ~v(t) = − ie

ωme

~E(t)

(2.1)

Now, using eq. (2.1) and comparing the two definitions of the current density ~J , we can
solve for the electric conductivity σ of the medium:

{
~J = −nee~v
~J = σ ~E

⇒
{

~J = inee2

ωme
~E

~J = σ ~E
⇒ σ =

inee
2

ωme
(2.2)

where ne is the electron number density. On the other hand, we can recall the continuity
equation and express it in the Fourier domain:

∂ρ(t)

∂t
+ ~∇ · ~J = 0

Fourier−→ −iωρ(t) + i~k · ~J = 0 (2.3)

where ρ(t) is the charge density. Remembering that ~J = σ ~E, we obtain:

ρ(t) =
1

ω
σ~k · ~E (2.4)

Now that we have expressions for ~J and ρ, i.e. the sources of the electromagnetic field, we
can substitute them in Maxwell’s equations in the frequency domain. The result is:





i~k · (ε ~E) = 0

i~k · ~B = 0

i~k × ~E = iω
c
~B

i~k × ~B = − iω
c (ε ~E)

(2.5)

The relevant fact is that the so-obtained Maxwell’s equations are formally identical to the
case of propagating in vacuum, except for the presence of a multiplicative factor ε, defined
as:

ε = 1− 4πσ

iω
= 1− 4πnee

2

meω2
= 1−

ω2
p

ω2
(2.6)

where we have also defined the plasma pulsation ωp as:

ωp
.
=

√
4πnee2

me
(2.7)

Consequently, the plasma frequency is trivially fp = ωp/2π. We also know that, in general,
the following relation between the wavelength λ, the frequency f and propagation velocity
v of an electromagnetic wave, holds:

λf = v ⇔ ω

k
= v (2.8)
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In addition to this, from Maxwell’s equations, we have v = c√
ε
, so that:

ω

k
= v =

c√
ε

⇒ ω2

k2
=
c2

ε
⇒ k2c2 = ω2ε (2.9)

and thus, straightforwardly:

k2 =
1

c2
(ω2 − ω2

p) (2.10)

The first thing that can be noticed is that, depending on whether the radiation pulsation
ω is higher of lower than the plasma pulsation, eq. (2.10) does have solutions or not.
Indeed:

ω < ωp ⇒ k2 < 0 ⇒ no solutions

ω > ωp ⇒ k2 > 0 ⇒ two solutions

The first corresponds to the case in which radiation is absorbed by the ionized medium,
whilst the second one indicates an effective propagation. To see at which speed the signal
will then travel, we recall the definition of group velocity vg of an electromagnetic wave
and, by first reversing eq. (2.10), we calculate its expression as a function of the frequency
f (or, equivalently, of the pulsation ω):

vg =
∂ω

∂k
=

∂

∂k
(k2c2 + ω2

p)
1/2 (2.11)

from which we get:

vg = c

√

1−
ω2
p

ω2
= c

√
1−

f2
p

f2
(2.12)

As we can see in Figure 2.1a, the group velocity is an increasing function of frequency,
asymptotically tending to c for f →∞.

The measurement of distance

We can exploit the dispersion effect in order to guess how far a pulsar is. We saw that the
refraction index of the medium as seen by an electromagnetic wave (and the propagation
speed of this latter) actually depends on the wavelength. It is easy to calculate the
delay ∆t(f,∞) with which the signal emitted by a pulsar would reach the Earth, from a
distance d, with respect to an infinite-frequency wave (or, equivalently, in the absence of
plasma):

∆t(f,∞) =

(∫ d

0

dl

vg

)
− d

c
(2.13)

where the integral is performed along the optical path, from the source to the observer.
Since the standard observing frequencies are by far higher than the typical plasma fre-
quency (f � fp) we can expand the dispersion relation (2.12) as a Taylor series to first
order and substitute it in eq. (2.13), so that:

∆t(f,∞) '
1

c

∫ d

0

[
1 +

1

2

f2
p

f2

]
dl − d

c
=

e2

2πmec

1

f2

∫ d

0
nedl ≡ D ×

DM

f2
(2.14)
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(a) An example of the dispersion relation with fp ' 1.55
kHz. This value is typical in the case of the Galactic ISM
[35]. Radio waves at frequencies below this threshold would
be absorbed by the propagation medium.
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the shape and evolution of pulsar beams and fraction of sky they cover. This is of key importance
to the results of population studies reviewed in Section 3.2.

2.4 The pulsar distance scale

Quantitative estimates of the distance to each pulsar can be made from the measurement of pulse
dispersion – the delay in pulse arrival times across a finite bandwidth. Dispersion occurs because
the group velocity of the pulsed radiation through the ionised component of the interstellar medium
is frequency dependent. As shown in Figure 6, pulses emitted at lower radio frequencies travel
slower through the interstellar medium, arriving later than those emitted at higher frequencies.

Figure 6: Pulse dispersion shown in this Parkes observation of the 128 ms pulsar B1356–60. The dispersion
measure is 295 cm–3 pc. The quadratic frequency dependence of the dispersion delay is clearly visible.
Figure provided by Andrew Lyne.

Quantitatively, the delay ∆t in arrival times between a high frequency νhi and a low frequency

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-8

(b) Effect of dispersion on the signal
of PSR B1356-60. On the top panel of
the picture is visible the anticipation of
the pulse at higher frequencies. On the
bottom is the de-dispersed pulse profile.
Credits: Andrew Lyne.

Figure 2.1

Here two quantities have been introduced. D is called the dispersion constant and it is a
numerical factor that depends only on constants:

D =
e2

2πmec
' 4.15× 103 MHz2 pc−1 cm3 s (2.15)

More importantly, DM is said to be the dispersion measure:

DM =

∫ d

0
nedl (2.16)

As we will see, it turns out to be one the most relevant quantities in all pulsar observational
techniques.
Since the electron density is in general a function of the point, if we know the electron
distribution along our line of sight, we can evaluate the distance of the source by measuring
the delays in the arrival times of the pulses. We can do so by observing at two different
frequencies, f1 and f2, and then measuring the delay between the arrival times of the two
signals, that will be:

∆t(f1,f2) =
e2

2πmec
·
(

1

f2
1

− 1

f2
2

)
·DM (2.17)

Once we compute the DM we can integrate eq. (2.16) to then obtain the distance of the
pulsar, d. It is worth noticing that also the converse is true: if we know the distance, we
can infer the average electron density distribution along the line of sight.
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2.1.2 Faraday rotation

The same frequency dependance of the propagation velocity that is responsible for the
dispersion also causes a phase shift between the right-handed and left-handed circular
polarization components, in the presence of a cold, magnetized plasma. Let us consider a
uniform magnetic field, namely ~B = B0ẑ (where ẑ is the unit vector of our z-axis), and a
circularly polarized electromagnetic wave propagating along the direction of ~B; its electric
field is:

~E(t) = E0(ε̂1 ± ε̂2)ei(
~k·~x−ωt) (2.18)

Here we have expressed the electric field with the orthogonal unit vectors of the two linear
polarizations, ε̂1, ε̂2, since any circular polarization can be seen as a linear combination
of them. The ‘+’ and ‘−’ signs are for left- and right-handed circularly polarized waves,
respectively. The same Maxwell’s equations as those of the previous section still hold, but
now we must add the Lorentz force in the equation of motion (2.1) of the charge:

~F = −e ~E − e~v
c
× ~B ⇒ ~v(t) = − ie

(ω ± ωc)me

~E(t) (2.19)

where we have introduced the Larmor (or cyclotron) pulsation, ωc = eB0/mec. Again,
the Larmor frequency is simply fc = ωc/2π.
It is evident from eq. (2.19) that there is a difference between the two left-handed and
right-handed circular components of the wave, because the electron has its own direction of
rotation in the magnetized medium. By analogous considerations to the case of dispersion,
it is straightforward to prove that the propagation velocities of the two circular components
are different. As a result, in a distance d, a radiation of frequency f undergoes a relative
phase shift of:

∆Φ = −k(f)d (2.20)

where the wave numbers for the two polarizations are:

k(f)± =
2π

c
f

√
1−

f2
p

f2
∓
f2
p fc

f3
(2.21)

Considering the reasonable approximations induced by the conditions f � fp and f � fc,
it is straightforward to find the general expression of the difference between the rotations
undergone by the two circular components, that is:

∆ΨF =

∫ d

0
(k+ − k−)dl ' e3

πm2
ec

2f2

∫ d

0
neB‖dl (2.22)

where B‖ is the projection of the magnetic field along the propagation direction of the
wave. The observable effect is the rotation of the position angle (defined in eq. 1.8) of the
linear polarization, by the amount of half the angle above calculated:

∆Ψ =
1

2
∆ΨF ≡ λ2 × RM (2.23)

where we have introduced the rotation measure, RM:

RM
.
=

e3

2πm2
ec

4

∫ d

0
neB‖dl (2.24)
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2.1.3 Scintillation

Not only is the ISM magnetized and ionized, but also turbulent and inhomogeneous. This
cause the observed intensity to significantly vary on different timescales and frequency
bands. This phenomenon is called scintillation. We can think of the ISM scintillation
as the Galactic counterpart of what happens on Earth: as stars twinkle because of the
atmosphere turbulences, so do pulsars because of ISM turbulences.

2.1.4 Scattering

The inhomogeneity of the ISM produces another important effect. Density irregularities
in the medium make rays scatter, letting them reach the observer after a longer optical
paths, which translate in delays in the times of arrival of those rays. For simple statistical
reasons, most of the rays will travel to the observer in fairly straight optical paths, whereas
some others will be first scattered once or more times before getting to destination. The
pulse will thus appear broadened by a tail that can approximately be fitted by an expo-
nential with a time constant, τs, called scattering time. Obviously, the more distant the
pulsar, the more evident the phenomenon. Since it is a scattering process, it also strongly
depends on the frequency, as can be seen in Figure 2.2. It is a common practice that of
measuring τs at various wavelengths in order to obtain precious information about the
ISM itself and its turbulent structure.

24 Duncan R. Lorimer

Following [98], we express this threshold as follows:

Smin =
S/Nmin

η
√

npol

�
Trec + Tsky

K

��
G

K Jy−1

�−1 �
∆ν

MHz

�−1/2 �
tint

s

�−1/2 �
W

P −W

�1/2

mJy, (3)

where S/Nmin is the threshold signal-to-noise ratio, η is a generic fudge factor (� 1) which ac-
counts for losses in sensitivity (e.g., due to sampling and digitization noise), npol is the number of
polarizations recorded (either 1 or 2), Trec and Tsky are the receiver and sky noise temperatures,
G is the gain of the antenna, ∆ν is the observing bandwidth, tint is the integration time, W is the
detected pulse width and P is the pulse period.

3.1.2 Interstellar pulse dispersion and multipath scattering

It follows from Equation (3) that the minimum flux density increases as W/(P −W ) and hence W
increases. Also note that if W � P , the pulsed signal is smeared into the background emission and
is no longer detectable, regardless of how luminous the source may be. The detected pulse width
W may be broader than the intrinsic value largely as a result of pulse dispersion and multipath
scattering by free electrons in the interstellar medium. The dispersive smearing scales as ∆ν/ν3,
where ν is the observing frequency. This can largely be removed by dividing the pass-band into
a number of channels and applying successively longer time delays to higher frequency channels
before summing over all channels to produce a sharp profile. This process is known as incoherent
dedispersion.

The smearing across the individual frequency channels, however, still remains and becomes
significant at high dispersions when searching for short-period pulsars. Multipath scattering from
electron density irregularities results in a one-sided broadening of the pulse profile due to the delay
in arrival times. A simple scattering model is shown in Figure 12 in which the scattering electrons
are assumed to lie in a thin screen between the pulsar and the observer [331]. The timescale of
this effect varies roughly as ν−4, which can not currently be removed by instrumental means.

Emitted Pulse Detected Pulse

Pulsar Telescope

Figure 12: Left panel: Pulse scattering caused by irregularities in the interstellar medium. The different
path lengths and travel times of the scattered rays result in a “scattering tail” in the observed pulse profile
which lowers its signal-to-noise ratio. Right panel: A simulation showing the percentage of Galactic pulsars
that are likely to be undetectable due to scattering as a function of observing frequency. Low-frequency
(� 1 GHz) surveys clearly miss a large percentage of the population due to this effect.

Dispersion and scattering are most severe for distant pulsars in the inner Galaxy where the
number of free electrons along the line of sight becomes large. The strong frequency dependence of
both effects means that they are considerably less of a problem for surveys at observing frequencies

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-8

(a) Schematic representation of the scattering ef-
fect due to the ISM. Credits: [34].

(b) Frequency dependance of the scattering ef-
fect.

Figure 2.2
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2.2 Timing

Basically, the idea behind timing is simple: exploit the high rotational rate and stability of
pulsars to measure the times of arrival of their pulses and then satisfactorily match them
to the expected values given by a theoretical “model”. The parameters on which this
model is based give insights on the properties of pulsars and its environment. However,
in doing so, a lot complications emerge, both theoretical and practical.

We can first summarize the logical steps necessary to perform timing.

• Signal detection and dedispersion.

• Folding.

• Cross correlation and TOA extraction.

• Fit of TOA residuals and parameters estimations.

Binary and Millisecond Pulsars 35

4 Principles and Applications of Pulsar Timing

Pulsars are excellent celestial clocks. The period of the first pulsar [141] was found to be stable to
one part in 107 over a few months. Following the discovery of the millisecond pulsar B1937+21 [18]
it was demonstrated that its period could be measured to one part in 1013 or better [94]. This un-
rivaled stability leads to a host of applications including uses as time keepers, probes of relativistic
gravity and natural gravitational wave detectors.

4.1 Observing basics

Each pulsar is typically observed at least once or twice per month over the course of a year
to establish its basic properties. Figure 20 summarises the essential steps involved in a “time-of-
arrival” (TOA) measurement. Pulses from the neutron star traverse the interstellar medium before
being received at the radio telescope where they are dedispersed and added to form a mean pulse
profile.

Receiver

Mean Pulse Profile

TOA
Reference clock

Neutron star
Radio beam

Rotation axis

Telescope

De-dispersion &
On-line folding

Figure 20: Schematic showing the main stages involved in pulsar timing observations.

During the observation, the data regularly receive a time stamp, usually based on a caesium
time standard or hydrogen maser at the observatory plus a signal from the Global Positioning
System of satellites (GPS; see [93]). The TOA is defined as the arrival time of some fiducial point
on the integrated profile with respect to either the start or the midpoint of the observation. Since
the profile has a stable form at any given observing frequency (see Section 2.3), the TOA can
be accurately determined by cross-correlation of the observed profile with a high S/N “template”
profile obtained from the addition of many observations at the particular observing frequency.

Successful pulsar timing requires optimal TOA precision which largely depends on the signal-
to-noise ratio (S/N) of the pulse profile. Since the TOA uncertainty �TOA is roughly the pulse
width divided by the S/N, using Equation (3) we may write the fractional error as

�TOA

P
�

�
Spsr

mJy

�−1 �
Trec + Tsky

K

��
G

K Jy−1

�−1 �
∆ν

MHz

�−1/2 �
tint

s

�−1/2 �
W

P

�3/2

. (8)

Here, Spsr is the flux density of the pulsar, Trec and Tsky are the receiver and sky noise temperatures,
G is the antenna gain, ∆ν is the observing bandwidth, tint is the integration time, W is the pulse
width and P is the pulse period (we assume W � P ). Optimal results are thus obtained for
observations of short period pulsars with large flux densities and small duty cycles (i.e. small
W/P ) using large telescopes with low-noise receivers and large observing bandwidths.

One of the main problems of employing large bandwidths is pulse dispersion. As discussed
in Section 2.4, pulses emitted at lower radio frequencies travel slower and arrive later than those

Living Reviews in Relativity
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Figure 2.3: Summarizing scheme of the timing procedure. Credits: [35].

2.2.1 Signal detection and dedispersion

A radio telescope, like the 64-meter single dish in Parkes or the upcoming Sardinia Radio
Telescope (SRT), is capable of tracking a source and collecting its radiation for a certain
time, Tobs. Depending on the receiver and the back-end used, the telescope has its own
sensitive band. Normally this latter is divided into many different sub-channels; for ex-
ample it is common to have a 256-MHz band divided into 512 channels, each 0.5-MHz
wide. From each of them one gets a time series of the source signal, i.e. the radio flux
density at the central frequency of the channel as a function of time. For the reasons we
treated in Section 2.1.1, the signals in the different channels have different propagation
velocities through the ISM and that results in delays in the times of arrival of the pulses
at decreasing frequencies (Figure 2.4).
This effect is clearly visible when a new pulsar is discovered; the pulse shift is evident
throughout the band (Figure 2.1b). We also remarked the fact that pulsars are weak
sources so that it could be a good idea to sum all the channels and obtain a unique time
series with a higher S/N. If we did so without caring about dispersion, we would get a time
series in which the pulses are much broader than they were in the single channels; this
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Figure 2.4: A radio telescope collects the pulsar radiation over a wide band, which is in turn split
into a number of channels. From each of them, one gets a time series. This allows to drastically
reduce the effects of dispersion in every single channel, since the electromagnetic wave looks quasi-
monochromatic.

happens because the original signals in the different channels are not aligned in time. The
solution is the so-called dedispersion, i.e. a procedure (nowadays carried out via software)
by which appropriate time delays are applied to each channel in order to compensate the
anticipation of the higher-frequency time series.

Note that this process, even if in theory able to remove the dispersion effect completely, is
intrinsically limited by the width of the individual frequency channels, in which a small dis-
persion delay is retained. Other technical approaches (i.e. coherent dedispersion, in which
the dispersion effect is removed before the detection) can solve this issue completely.

2.2.2 Folding

The main goals of this step are essentially two:

• Increasing the signal-to-noise ratio.

• Getting an integrated profile, which is stable in time and represents the very finger-
print of the specific pulsar.

Once the data is dedispersed with a proper DM guess, we have got rid of any inconvenient
possible future pulse smearing when summing different channels. The following step is
to split the time series of each channel into many “single” pulses of the width of the
guessed spin period P and then sum them together. If the period guess is correct, we will
finally have an “averaged” or “integrated” profile, boasting a higher S/N, that represents
the average emission of the pulsar over the time interval in which the folding has been
done (Figure 2.5) at the particular central frequency of the considered channel. If it is
not, similarly to the case of dispersion, the single summed pulses will drift along the
period linearly with time. In particular, when the period guess is slightly longer than
the real one, we will see an anticipation of the pulse over the next rotations (Figure 2.6).
Conversely, a shorter period guess will lead to a delay of the pulse along the period over
time. In both cases the resulting integrated profile will look broader and the S/N lower
than expected.
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Clearly, in order to perform the folding, we need to know the precise value of P ; however,
we know that for various reasons (spin-down, orbital motion ecc.) it varies all along. Thus,
we would certainly have a broadening of the pulse also if we folded a long time series with
a constant period, even if the value of this latter was exactly the real one at the considered
epoch. The remedy to this issue is to not do the folding over the whole time series, but
rather in much shorter portions (called sub-integrations) of it, where we are allowed to
regard P as constant with a high degree of accuracy.

P P P P P P P P
Subint 1

1

P

+

+

+

Subint 2

2

P

+

+

+

P P

Figure 2.5: When the folding is done properly, the resulting integrated profile shows a very sharp
pulse, which is stable in phase in all the sub-integrations. The S/N is much higher than that of a
pulse.
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Figure 2.6: The result of folding a time series with a wrong (in this case, longer) period guess. The
integrated profiles get broader and the pulse itself shifts along the period from a sub-integration
to another.
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Figure 2.7: Determination of the time of arrival (TOA) associated with an integrated (folded)
pulse profile. The latter is cross-correlated with a very high-S/N reference profile and from that
the TOA is then extracted.

2.2.3 Cross correlation and TOA extraction

For the integrated profiles of each sub-integration, we would like to associate a time of
arrival (TOA) which we can define as the arrival time of some fiducial point on the inte-
grated profile with respect to either the start or the midpoint of the observation. In order
to do that, we perform the cross-correlation, i.e. a convolution between the integrated
pulse profile and a “template” profile, which is a very high S/N profile obtained from the
addition of many observations at the particular observing frequency.
Thanks to the cross-correlation operation, which is carried out with the help of some ref-
erence atomic clock, the uncertainty associated with the TOA is much smaller than the
sampling period.

2.2.4 The timing formula and determination of the TOA residuals

We know that the pulsar period, even if mostly stable, actually changes over time. Since
we do not know the real mechanisms which drive its variation and, in addition, this latter
is normally very small, the best thing we can do is expanding1 the spin period P (or, as

1Note that in this form the expansion does not take into account possible period glitches.
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we are going to do, the spin frequency ν = 1/P ) as a Taylor series:

ν(t) = ν0 + ν̇0(t− t0) +
1

2
ν̈0(t− t0)2 + . . . (2.25)

Here t0 is a certain reference epoch, and ν0, ν̇0, ν̈0 are the spin frequency, its first2 and
second derivative, respectively, as measured at that time. Normally, ν̈0 is extremely small
and only in a very few pulsar we are able to observe it. Eq. (2.25) represents our theoretical
model with which we would like to make predictions. In its explicit expression, a lot of
physical parameters are present; if we knew all such parameters with infinite precision,
we could count the number of pulses N(t) we expect to observe after any time t. Indeed,
integrating, we have:

N(t) = N0 + ν0(t− t0) +
1

2
ν̇0(t− t0)2 +

1

6
ν̈0(t− t0)3 + . . . (2.26)

where now N0 is the pulse number at the reference epoch.

It is important to remark that these formulas are referred to the inertial rest frame of
the pulsar. It is well known, however, that our observing frame of reference (topocentric
reference) is not inertial. This is primarily caused by the rotation of the Earth about
its spin-axis and its motion along its orbit around the Solar System barycenter. On the
contrary, despite its revolution motion around the center of the Galaxy, we can consider
the Solar System Barycenter (SSB) as an inertial frame to a very good approximation, at
least for our initial purposes. Deviations effects due to the fault of this assumption, could
instead be visible in some finer observables.
For the above reasons, it is far simpler to study the arrival times in the SSB instead of the
topocentric reference, i.e. instead of our laboratory. We thus need to make a transforma-
tion from one frame to the other, which we can express by the following equation:

tSSB = tobs −∆DM + ∆R� −∆S� + ∆E� (2.27)

To better understand its meaning, we explain each term. Here tobs is simply the arrival
time as revealed by the telescope, whereas ∆DM is the delay induced by dispersion. The
last three terms are instead called barycentric corrections for they are actually the ones
responsible for the transformation from the topocentric frame to the SSB.

Dispersion delay: ∆DM From what we have learnt from Section 2.1.1 we know that
the presence of plasma in the ISM makes the light travel slower at decreasing frequen-
cies. We then include this effect straightforwardly, remembering the inverse-square
dependance on the frequency.

∆DM = D · DM

f2
(2.28)

Even if here we do not concern about the actual stability of the dispersion measure,
it has been observed in several cases that it could actually be a function of time and
the correction would need some modification to take it into account, including the
first DM derivatives. The reasons can be related either to ISM turbulences or to the
presence of a gas cloud in the vicinity of the pulsar, like in the systems we are going
to introduce in the next chapter.

2The first derivative is also often referred to as the pulsar spin-down.



CHAPTER 2. OBSERVING A PULSAR 33

Römer delay: ∆R� It is the correction that takes into account the additional travel time
of light between the position of the telescope and the SSB. The different optical path
that light must travel with respect to the barycenter during the revolution of the
Earth around the Sun, implies a changes in the time taken to reach the observer,
i.e. the phase center of the telescope. We denote by ŝ the unit vector pointing from
the SSB to the pulsar, and by ~r the vector from the former to the observer, which in
turn we can write as ~r = ~rSSB + ~rEO, where the first connects the SSB to the center
of the Earth and the second connects this latter to the observer. In this way, we can
write:

∆R� = −1

c
~r · ~s = −1

c
(~rSSB + ~rEO) · ~s (2.29)

Just to have an idea of the expected trend and periodicity of the time residuals due
to this effect, we can ignore the linear dimensions of the Earth (which play a much
smaller role) and consider only the first scalar product of the right-hand side of eq.
(2.29). Explicitly, we can express it as:

1

c
~rSSB · ~s =

d⊕
c

cosβ cos(Ωrt− λ) (2.30)

where d⊕ = 1 AU is the average distance of the Earth from the Sun, β and λ are
the ecliptic latitude and longitude, respectively, and Ωr is the average revolution
angular velocity3. Under this assumptions, it is straightforward to understand that
the expected modulation in the residuals has a period of 1 year, its magnitude is
maximum if the pulsar is in the ecliptic plane, β = 0, and vanishes if β = ±90◦.

Note also that the Römer delay is a completely classical effect.

Shapiro delay: ∆S� It accounts for the general relativistic corrections due to the cur-
vature of space-time. We know that every massive body causes space-time to warp.
This makes the light travel a longer optical path with respect to a perfectly flat
space-time. The most important contributors, in our case, are the Sun and Jupiter
but, to be precise, we must sum over all the celestial bodies of the Solar System.
Starting from the general relativistic metric in the weak-field approximation, one
can show that it is possible to write the delay as:

∆S� = −2
∑

i

GMi

c3
ln

(
ŝ · ~r⊕i + |~r⊕i |
ŝ · ~rPi + |~rPi |

)
(2.31)

where G is the universal gravitational constant, Mi is the mass of the i-th body,
~rPi is the pulsar position with respect to it and ~r⊕i is the vector that connects the
observatory to the i-th body when the photon is at its minimum distance from the
latter.

Einstein delay: ∆E� It embodies both the effect of gravitational redshift due to the
presence of massive bodies in the Solar System and the effect of time dilation due
to the relative motion of the Earth with respect to the pulsar. Römer and Shapiro
are delays that acts in the coordinate time, t, though the measures are made in the

3It is clear that in cosidering the Earth’s orbit as circular (which implies d⊕ = const, Ωr = const) we
have made another approximation. The non-zero eccentricity of the orbit would, in reality, give rise to an
additional modulation of the signal even if of tiny magnitude.
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rest frame of the observatory, whose clock has its own proper time, τ . Again it can
be shown [13], by simple general relativistic calculation in a Schwarzschild metric,
that the Einstein delay is:

∆E� = t− τ =

∫ t

dt′
[ ∑

i 6=Earth

GMi

c2|~r⊕i |
+
v2
⊕

2c2

]
(2.32)

This time the sum is performed over all the bodies but the Earth, whose velocity
relative to Sun is v2

⊕ and its magnitude is a function of time if we take into account
the eccentricity of the orbit.

There are some other minor effects that should be included in the timing formula, but we
will neglect them (at least in explaining them theoretically) for brevity.

2.2.5 Best-fit of TOA residuals and parameters estimation

What we need to perform the transformation from the topocentric to the barycentric
reference, as well as to correct for the pulse period variations over time and so on, is
included in the ephemeris of the particular source. This is essentially a“table” containing
all the positional, rotational, kinetic and (possibly) orbital information we know about the
considered object; in other words, the ephemeris contains all the parameters involved in
our timing model.

From the observational data of our source, we get the times of arrival of its pulses. Finding
a timing solution means “connecting” all the pulses of the source with a definite phase-
coherent timing model, whose parameters have to be found. If the model is actually
correct, it will allow us to count all the pulses occurring in any specific interval of time.
More importantly, we will also have a very accurate estimate for the physical parameters
that were involved in that timing model.

The way by which the timing solution can be found is through a least-squares fit to the
TOA residuals. Formally, what we have to do is minimizing the following variable:

χ2 =
∑

i

(
N(ti)− ni

σi

)2

(2.33)

where ni is the nearest integer to the pulse number N(ti) predicted by the model at the
time ti of a given TOA, and σi is the TOA uncertainty in units of the pulse period.

If the fit is done correctly accounting for all the involved parameters, the post-fit TOA
residuals will be Gaussian-distributed around zero, with a root mean square of the order
of the TOA uncertainties (Figure 2.8). The uncertainties on the estimated parameters will
depend on the fitting algorithm and will in general decrease with the length of the data
span, as well as with the orbital coverage in the case of binary systems.
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Figure 3: (a) Timing residuals for the 1.19 s pulsar B1133+16. A fit of a perfect timing
model should result in randomly distributed residuals. (b) A parabolic increase in the
residuals is obtained if Ṗ is underestimated, here by 4 per cent. (c) An offset in
position (in this case a declination error of 1 arcmin) produces sinusoidal residuals
with a period of 1 yr. (d) The effect of neglecting the pulsar’s proper motion, in this
case µT = 380 mas yr−1. In all plots we have set the reference epoch for period and
position to the first TOA at MJD 48000 to show the development of the amplitude
of the various effects. Note the different scales on each of the vertical axes.

square that is comparable to the TOA uncertainties (see Fig. 3). A good test for the
quality of the TOAs and their fit is provided by creating a new set of mean residuals,
each formed by averaging navg consecutive post-fit residuals. The root mean square
calculated from the new set should decrease with

√
navg if no systematics are present.

After starting with fits for only period and pulse reference phase over some hours
and days, longer time spans slowly require fits for parameters like spin frequency
derivative(s) and position. Incorrect or incomplete timing models cause systematic
structures in the post-fit residuals identifying the parameter that needs to be included
or adjusted (see Figure 3). The precision of the parameters improves with length of
the data span and the frequency of observation, but also with orbital coverage in the
case of binary pulsars.

7 Binary Pulsars

Observations of pulsars in binary orbits show a periodic variation in pulse arrival
time. The timing model therefore needs to incorporate the additional motion of the
pulsar as it orbits the common centre of mass of the binary system. For non-relativistic
binary systems, the orbit can be described using Kepler’s laws. For a number of binary
systems however, the Keplerian description of the orbit is not sufficient and relativistic
corrections need to be applied.

Kepler’s laws can be used to describe a binary system in terms of the five Keple-
rian parameters, shown schematically in Figure 4. These five parameters are required
to refer the TOAs to the binary barycentre: (a) orbital period, Pb; (b) projected
semi-major orbital axis, ap sin i (see below); (c) orbital eccentricity, e; (d) longitude
of periastron, ω; (e) the epoch of periastron passage, T0.

Figure 2.8: Post-fit residuals in the case of: a) a correct estimation of all the involved parameters;
b) an underestimated spin period derivative; c) an error in the estimation of the position; d)
neglecting the proper motion of the source. Credits: Michael Kramer.

2.3 Timing binary systems

When studying a binary system, a number of other effects must be included. The motion
of the two star around their common center of mass induces new modulations to the arrival
times of the pulses and thus to the TOA residuals. Formally, we need to add four new
contributions to eq. (2.27), which becomes:

tSSB = tobs −∆DM + ∆R� −∆S� + ∆E� + [∆RB + ∆SB + ∆EB + ∆AB] (2.34)

The first three terms in the square brackets are just the same Römer, Shapiro and Einstein
delays as above, with the only difference that they are applied to the binary system. The
last term, instead, takes into account aberration effects due to the orbital motion.

2.3.1 Keplerian orbits

Even though we are including relativistic effects in calculating the delays, there is often
no need to describe the orbits of a binary system in a general-relativistic picture. For
non-relativistic binaries, like those we will study in the next chapters, we can simply treat
the orbits as Keplerian. That means, for example, that they are actually closed and we
only need seven parameters to completely describe the dynamics of the binary. Such
parameters are:

• Pb: the orbital period.

• ap: the semi-major axis of the orbit of the pulsar.

• i: the inclination of the system, i.e. the angle between the line of sight and the
normal to the orbital plane.
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Figure 2.9: Principal parameters used to describe the position of a body in a general elliptic orbit
in a binary system. Credits: [35].

• e: the orbital eccentricity.

• Ωasc: the angle between the line of nodes of the orbit and an assumed direction in
the sky.

• ω: the periastron longitude, as measured from the ascending node.

• T0: the epoch of periastron passage.

In the case of pulsar timing we are only able to measure 5 parameters, namely Pb, e, ω,
T0 and the combination ap sin i, that is the projection of the semi-major axis of the pulsar
orbit along the line of sight. A visual representation of the above quantities can be seen
in Figure 2.9b.

Recall now that the motion of a body in an elliptical orbit can be described by three
different angles, namely the true anomaly AT , the eccentric anomaly E and the mean
anomaly M.
The first is determined by the line connecting one focus to the position on the orbit.
The second one is instead specified by the line connecting the geometrical center of the
ellipse to the intersection of the auxiliary circle of radius the semi-major axis of the ellipse
with the line normal to this latter and passing through the real position of the massive
body (Figure 2.9a). The third one is a sort of average of the two based on the fact that
equal areas are swept at the focus in equal intervals of time (2nd Kepler’s law); for this
reason, the mean anomaly has the important property of growing linearly with time in
non-relativistic orbits, no matter the value of their eccentricity. The main relations among
the three are the following:

M = E − e sinE (2.35)

E = arccos

(
cosAT − e

1− e cosAT

)
(2.36)

While the passage from the true anomaly to the mean anomaly can be achieved straight-
forwardly, the opposite has no closed-form solutions and must be performed numeri-
cally.
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Let us call a = ap + ac the orbital separation of the system (where ac is the semi-major
axis of the companion’s orbit), and Mp,Mc the mass of the pulsar and of the companion,
respectively. By definition of center of mass, we know that Mc ac = Mp ap and the semi-
major axes of the two orbits can be computed as follows:

ap = a
Mc

Mp +Mc
(2.37)

ac = a
Mp

Mp +Mc
(2.38)

Now, combining Kepler’s third law, P 2
b = 4π2a3/G(Mp + Mc) and the definition of pro-

jected semi-major axis of the pulsar orbit, x
.
= ap sin i, one can define the so-called mass

function of the pulsar:

f(Mp) =
4π2

G

x3

P 2
b

=
(Mc sin i)3

(Mp +Mc)2
(2.39)

The importance of such a function resides in the fact that it is an easily-measurable
quantity, for it depends only on the orbital period and the projected semi-major axis of
the pulsar orbit. From the mass function one can estimate the companion’s mass, once
the pulsar mass and the inclination are set. While the former has a quite narrow range
(Mp = 1 ÷ 2.5 M�), the latter is more difficult to infer. Usually one has to settle for an
estimated companion mass and orbital separation as a function of the inclination (normally
after conventionally setting Mp = 1.4 M�). Formally, from the three equations:





f(Mp) = (Mc sin i)3/(Mp +Mc)
2

Mc ac = Mp ap
x = ap sin i

(2.40)

we get:

a(i) = ac(i) + ap(i) =

(
Mp

Mc(i)
+ 1

)
x

sin i
(2.41)

Even without knowing the inclination, the mass function is also helpful to give a lower
limit to the mass of the companion:

f(Mp) =
Mc(

Mp

Mc
+ 1
)2 sin3 i < Mc sin3 i ⇒ Mc >

f(Mp)

sin3 i
(2.42)

The value obtained for i = 90◦ represents the lower limit for Mc.



Chapter 3

Eclipsing binary pulsars

After reviewing the main characteristics of pulsars, we now move to the particular kind
we are going to focus on.
We have seen that all millisecond pulsars must stem from binary systems, in which main
sequence companions let them accrete matter and then spin up. A remarkable fact is
that some of them show long regular eclipses in their signal that last for a relatively large
fraction of their orbital period. At first one could be induced to justify it by saying that
they are due to the size of the companion which hides the pulsar once per revolution.
Nonetheless, for many of them, that could not be the case: looking at data one soon
realizes that the occultation area is by far larger than the Roche lobe of the companion
star. So, it cannot be the star itself to keep the pulsar out of sight. There must be another
explanation.
Another piece of the puzzle is represented by the observation of isolated millisecond pulsars
which, in the simple evolutionary scenario described in the previous chapters, should not
exist. Hence, this kind of objects were likely binary systems in origin and some mechanism
must have come into play to make the companion disappear.

The very beginning of the study of eclipsing binary systems was the discovery of PSR
B1957+20, in 1987. After that, another handful of similar sources have been spotted [20]
and what came out is the topic of this chapter.

3.1 Black Widow Pulsars and Redbacks: an overview

The first two parts of Table 3.1 (labelled “Old BWPs” and “New BWPs”) and the first
part of Table 3.2, list a series of pulsars. Some common traits emerge from the observations
that have been made for such objects:

• They tend to show radio eclipses1 with the same repetition period as the orbital one.
The duration of the eclipses depends on the frequency, often following a power-law.

• They all have very tight, nearly circular orbits with orbital periods of a few hours.

1Note also that, whether a system does show eclipses or not, strongly depends on the inclination angle.

38



CHAPTER 3. ECLIPSING BINARY PULSARS 39

• They have very small mass functions. In almost all cases, the companion mass is
very likely less than a tenth of a solar mass (Mc . 0.1 M�).

• They show spin periods of the order of milliseconds, thus belonging to the class of
fully-recycled pulsars.

• Most of them were initially found in globular clusters (now the situation is rapidly
changing), and that gave some clues about their possible formation. The panorama
is going to get more complicated as a wealth of discoveries of eclipsing binaries in
the Galactic plane are now occurring.

The features described above are very similar to those we presented in the case of VLXBs.
Clearly, this is not by chance. All the eclipsing binary pulsars belong to the class of Very
Low-Mass Binary Pulsars (VLMBPs) or “Black Widow Pulsars” (BWPs)[20], a term by
which we denote the next evolutionary phase of VLXBs, once the accretion has stopped.
Black Widow Pulsars are so called because of their main feature, i.e. the ongoing ablation
of the companion: just like female black widow spiders kill their partner after mating, so
do such pulsars with their companions after being spun up through recycling. It is worth
remarking that not all VLMBPs actually show eclipses. Those which do not, exhibit
mass functions as low as f(Mp) = 10−5 M� while eclipsing binaries (ELMBPs) always
have f(Mp) & 3 · 10−4 M�. Since many other characteristics (like short orbital periods,
millisecond spin periods etc.) are common to both subclasses, it has been proposed [20]
that the correlation between very small mass functions and the lack of eclipses could be
explained in terms of the inclination. In fact, the most-widely accepted picture is that of
a gas cloud spilling off the companion provoking the signal obscuration. Hence, at high
values of the inclination (i ' 90◦) the system is seen nearly edge-on and thus eclipses are
very likely to be visible; conversely, lower i’s translate into looking at the system nearly
face-one, making the interception of the cloud by our line of sight less probable. On the
other hand, we can recall eq. (2.39) and see that the mass function is proportional to sin3 i:
the lower values of f(Mp) observed in the latter class of systems are thus compatible with
the explanation we gave above.

In the lower parts of Table 3.1 and Table 3.2 we instead have other sources which differen-
tiate from the previous ones for some features among which the most important are:

• Higher values for the mass functions and, hence, for the most probable masses of the
companions, namely Mc & 0.1÷ 0.2 M�.

• Longer orbital periods with values of ∼ 8.8 h on average.
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Table 3.1: List of known Black Widow Pulsars and Redbacks in the Galactic Field as of 2012. The “F” indicates that the pulsar is also a γ-ray
Fermi source. Credits: [27].

Name P0 [ms] Lp[1034 erg/s] d (NE2001) [kpc] Pb [hrs] Minimum Mc [M�] Category

Old BWPs
B1957+20 F 1.61 11 2.5 9.2 0.021 BWP
J0610-2100 F 3.86 0.23 3.5 6.9 0.025 BWP
J2051-0827 4.51 0.53 1.0 2.4 0.027 BWP

New BWPs

J2241-5236 F 2.19 2.5 0.5 3.4 0.012 BWP
J2214+3000 F 3.12 1.9 3.6 10.0 0.014 BWP
J1745+1017 F 2.65 1.3 1.3 17.5 0.014 BWP
J2234+0944 F 3.63 1.6 1.0 10 0.015 BWP
J0023+0923 F 3.05 1.6 0.7 3.3 0.016 BWP
J1544+4937 F 2.16 1.2 1.2 2.8 0.018 BWP
J1446-4701 F 2.19 3.8 1.5 6.7 0.0019 BWP
J1301+08 F 1.84 6.7 0.7 6.5 0.024 BWP
J1124-3653 F 2.41 1.6 1.7 5.4 0.027 BWP
J2256-1024 F 2.29 5.2 0.6 5.1 0.034 BWP
J2047+10 F 4.29 1.0 2.0 3.0 0.035 BWP
J1731-1847 2.34 7.6 2.5 7.5 0.04 BWP

J1810+1744 F 1.66 3.9 2.0 3.6 0.044 BWP

New Redbacks

J1628-32 F 3.21 1.8 1.2 5.0 0.16 Redback
J1816+4510 F 3.19 5.2 2.4 8.7 0.16 Redback

J1023+0038 F 1.69 ∼ 5 1.3 4.8 0.24 Redback
J2215+5135 F 2.61 6.2 3.0 4.2 0.22 Redback

J1723-28 1.86 ? 0.75 14.8 0.24 Redback
J2129-0429 F 7.61 3.9 0.9 15.2 0.37 Redback



C
H
A
P
T
E
R

3
.

E
C
L
IP

S
IN

G
B
IN

A
R
Y

P
U
L
S
A
R
S

41

Table 3.2: List of known Black Widow Pulsars and Redbacks in globular clusters as of 2012.

Name GC, letter P0 (ms) Pb (h) Mc (M�)† Date of Discovery Category

J0023-7203J 47 Tuc J 2.10 2.9 0.024 2000 BWP
J0024-7204O 47 Tuc O 2.64 3.3 0.025 2000 BWP
J0024-7204R 47 Tuc R 3.48 1.5 0.030 2000 BWP
J1518+0204C NGC 5904 2.48 2.09 0.038 2007 BWP
J1641+3627E NGC 6205 2.49 2.81 0.02 2007 BWP
J1701-3006E NGC 6266 E 3.23 3.8 0.035 2003 BWP
J1748-2446O Ter 5 O 1.68 6.23 0.04 2005 BWP
J1953+1846A NGC 6838 A 4.89 4.24 0.032 2007 BWP

J1823-3021F NGC 6624 F 4.85 * * 2008 -
J0024-7204V 47 Tuc V 4.81 4.8 * 2000 -

J0024-7204W 47 Tuc W 2.35 3.2 0.14 2000 Redback
J1701-3006B NGC 6266 C 3.59 3.47 0.14 2003 Redback

B1718-19 NGC 6342 1004.04 6.2 0.13 1993 Redback
J1740-5340 NGC 6397 3.5 32.5 0.22 2001 Redback

J1748-2446Aa Ter 5 A 11.56 1.81 0.10 1990 Redback
J1748-2446P Ter 5 P 1.73 8.70 0.44 2005 Redback
J1748-2446ad Ter 5 ad 1.40 26.3 0.16 2006 Redback
J1748-2021D NGC 6440 D 13.50 6.87 0.14 2008 Redback
J1824-2452H NGC 6626 H 4.63 10.44 0.20 2008 Redback
J1824-2452I NGC 6626 I 3.93 11.03 0.20 2008 Redback
J2140-2310A NGC 7099 A 11.02 4.18 0.11 2004 Redback

a More commonly known as B1744-24A.
† Calculated assuming a pulsar mass of Mp = 1.35 M� and an inclination i = 60◦.
* Parameter is still not well determined: this indicates that there is still no published timing/orbital solution.
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3.2 The origin of Black Widow Pulsars and Redbacks

The question about the birth of BWPs has not yet been completely answered. The same
is true for isolated millisecond pulsars (like PSR 1937+21) and, as already stated, the two
are probably in some way correlated.

As we explained in the previous sections, if a neutron star accretes enough matter to
be spun up to frequencies of hundreds of Hz and it may turn on some radio emission,
then we have a MSP. If it also has a companion with suitable physical parameters for
allowing the process of ablation, we can regard it as a BWP. A lot of ideas have been
suggested to justify the very small mass functions of BWPs and, related to that, to guess
the nature of their companions. In general we know that, if a pulsar accretes matter, it
cannot emit in the radio band, because the radio emission is inhibited by the in-falling
matter itself. An accelerated neutron star can appear to us as a radio pulsar only when
the process of accretion has stopped; that means, in the case of low-mass systems, that
the companion must not be filling its Roche lobe anymore. Thus, the initial thought
was that the companion would finally detach from its lobe once its whole envelope has
been completely lost and only the core would then remain, so that the star would turn
into a white dwarf (WD) made of helium or carbon-oxygen, depending on the initial mass.
Though, the hypothesis of WDs as companions is not compatible with the third ingredient
needed to make BWPs, i.e. the possibility of being ablated: the surface gravity (GM/c2R)
would be too high and the surface too small to be irradiated enough so that the object
could effectively evaporate. As an additional proof in support of this hypothesis, there
has never been evidence of any ablation in all the MSP-WD systems so far.

3.2.1 The onset of widowhood

The awkward issue explained above probably had a way out in the occurrence of many
more BWPs in globular clusters (GCs, hereafter) rather than in the Galactic field. In
fact, until a few years ago, almost all ELMBPs were observed in globulars; that nicely
fitted the idea by which such systems should not have formed according to the classical
evolutionary scenarios, typical of LMBPs and VLMBPs, which in fact are spotted both in
globulars and in the field. Hence, the hypothesis was that there had to be a way through
which GCs could produce BWPs. The most straightforward thinking went directly to one
of the peculiar features of globular cluster, i.e. dynamical events.

As we know, close encounters are very likely in such crowded systems of stars, and so
are gravitational captures and partner exchanges in binaries. The typical scenario that
can be seen in any globular cluster is indeed the following: many of the large number of
massive main sequence (MS) stars came to the end of their lives very early with respect to
the current age of the cluster; after the supernova explosion, most of high-speed isolated
neutron stars left the cluster. Some of the lower speed neutron stars instead remained
gravitationally bound to the cluster and progressively sank to the center of the cluster due
to the mass segregation effect. Finally, in the cluster core, dynamical events could have
yoked them with another MS star; this could have in turn filled its Roche lobe and made
the system visible as a LMXBs, thanks to accretion processes. The observational incidence
of such systems is indeed much higher in globulars rather than in the field, where they can
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instead form in this way only from primordial binary systems. In fact, when accretion has
stopped and the pulsar has been spun up, the MS star has been by now turned into a white
dwarf, so that we have a MSP-WD binary system. Also this system are more abundant in
globular clusters than in the Galactic disk (after normalizing to the total mass of the two
stellar systems, & 103 times larger for the Galactic disk). Davies & Hansen [12] have also
shown that exchange encounters in GCs tend to leave the most massive stars within the
binaries, independently of the initial composition of the system. More precisely, when an
isolated star (or a component of a binary system) approaches up to less than four times
the orbital separation of another binary system, the gravitational forces compel the two
to heavily interact. Usually, from a double system, a neutron star encounter will make
the less massive star be thrown away and a new binary made of the neutron star and the
more massive main sequence star then forms. As the latter evolves and fills its own Roche
lobe, the neutron star accretes matter and thus speeds up. According to the mass of the
companion, the destiny of the system will then be different [5]. Especially binaries made
of a MSP along with a low-mass (i.e. helium) WD are very likely to exchange the latter
with a more massive main sequence star, since there are plenty of them in GCs and, as
already outlined, it is the less massive object of the system to be flung.

At this point, we can trace the two possible channels [20] through which eclipsing binary
pulsars (BWPs) can most likely form in a GC:

• The first one is the case in which previously recycled pulsars (like those of MSP-WDs)
set in orbit around a new MS star via companion exchange.

• The second channel is that of an isolated neutron star impinging on a primordial
MS binary system.

At birth, the new system will probably be quite eccentric, due to the way it formed.
However, tidal forces ensure the final orbit to be almost perfectly circular (i.e. with
negligible eccentricity) and this is true both for initially wide (a ∼ 100 R�) and tight
(a ∼ 1÷ 10 R�) systems.
The most probable initial mass for the new companion is in between the turn-off mass of
the globular cluster (since the probability of capture is an increasing function of mass) and
the mass of the most abundant main sequence stars, typically 0.4 M�. The turn-off mass
of globular clusters is, at present, ∼ 0.7 M� on average. Under this picture, we expect
the population of rapidly spinning neutron stars in GCs to be hosted in tightly bound,
circular binary systems, with companions between ∼ 0.4 M� and ∼ 0.7 M�.

When the millisecond pulsar has a sufficiently strong spin-down radiation it can heat the
low mass main sequence companion and generate an induced stellar wind. This holds
true especially if the short orbital separation and the relatively large radius of a MS star
companion compensate for the usually weak magnetic field of the millisecond pulsar. If the
mass-loss rate Ṁc is sufficiently high, the companion can eventually completely evaporate,
over a timescale of τevap ∼ Mc/Ṁc, leaving behind an isolated millisecond pulsar. This
could represent the connection we cited at the beginning of the section between isolated
MSPs and BWPs.

It worth noticing that, from a statistical point of view, anytime there is evidence of
ablation, the companion mass turns out to be far lower than the aforementioned turn-
off value (Table 3.1). Some calculations [5] show that BWPs are seen as such only when
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Fig 11.80 Schematic of the processes of binary formation involving compact objects in globular clusters. (left) In the tidal
interaction of two stars, some of the relative kinetic energy must be lost for them to become bound. This is done through the
tides that are raised on the normal star by the compact object. Since the initial orbit in such a capture is eccentric, these tides
continue to operate at each close approach, thereby causing the orbit to rapidly circularise. (right) The alternative mechanism
involves a three-body interaction in which the compact object joins an existing wide binary of two normal stars. This is much
more complex. Eventually, one of the normal stars in this temporary triple system is ejected, thereby leaving the compact object
with the other as a companion (based on original diagrams by George Clark, MIT).

globular clusters, which subsequently evaporate,
but this is an area of active current research, and
there is far from agreement on the issue.

Demonstrating conclusively that cluster X-ray
sources are LMXBs proved challenging, with only
two periodicities being uncovered in the first 25
years of globular cluster X-ray source studies. It is
worth looking at these two more closely as both
are remarkable when compared with the LMXB
population as a whole.

11.4.3.1 NGC 6624 (4U1820-30): The shortest
orbital period known

As well as being the brightest cluster X-ray source
and the first burster, 4U1820-30 was also the first
of this class to reveal an X-ray periodicity. As part of
a study of X-ray QPOs in globular cluster sources,
Stella et al. (1987) obtained extensive observa-
tions of 4U1820-30 with EXOSAT (Fig. 11.81). To
their surprise, they found a weak (few per cent
amplitude) but precise modulation at a period of
11.4 min.

At first sight, such a discovery does not appear
to be remarkable. Neutron stars with strong
magnetic fields give rise to X-ray pulsations as

they rotate, with periods in the range of seconds to
minutes. However, one important characteristic
of X-ray pulsars is that the rotation period changes
with the luminosity of the source (more accreting
material spins the neutron star up faster, whereas
less material spins it down; see Fig. 11.16). In the
case of 4U1820-30 the periodicity was found to be
present in earlier observations (some going back
to the mid 1970s), with exactly the same value, even
though this object is extremely bright in X-rays
and must therefore be accreting at a very high
rate.

The implication is that the 685-s period must
be orbital in origin as no other explanation
appears viable. 4U1820-30 has the shortest orbital
period known and must be small in size – so small,
in fact, that no normal star could fit within it as
the mass donor. Only a degenerate object can fit
in the space available, and the current model con-
sists of a 0.05 M! helium white dwarf (which is
only 0.03 R! in size) filling its Roche lobe and
transferring material onto a 1.5 M! neutron star.
It is an ultra-compact binary, or UCB. 4U1820-30
would fit entirely inside our Sun, with room to
spare!

Figure 3.1: Companion exchange for a binary system in a dynamical event.

the mass loss due to the evaporation of the companion is quite low; in fact, in the cases
of a strong accretion from the irradiation-driven stellar wind, the pulsar can be totally
obscured by the spilled mass itself. For most of the systems, the mass loss is sufficiently
slow to make the pulsar visible only when Mc . 0.1 M�.

3.2.2 The distinct case of Redbacks

Contrary to what reported above, when the orbital period is not very short, the effect
of the ablation by the pulsar flux is strongly reduced and may be even negligible. This
holds true for most of the objects belonging to the class of the Redbacks. In fact a new
distinction among eclipsing binary pulsars has been recently introduced, according to the
mass function (and hence to the companion’s mass). Those systems whose companions
are of a few hundredths of solar masses must feature low mass-loss rates and are regarded
as the very Black Widow Pulsars. On the other hand, other systems show more massive
companions of a few tenths of solar masses which, whenever an optical identification of
them was possible, also resulted to be non-degenerate. Thus, they must experience heavier
mass loss, and for this reason, they are interpreted as systems where the nuclear evolution
drives the mass transfer. We refer to this new subclass of eclipsing binary pulsars [42] as
Redbacks, after the Australian “brothers” of Black Widow spiders. The first of such objects
was PSR J1740-5340 [38] discovered in 2001 in the globular cluster NGC 6397.

3.2.3 Eclipsing binaries in the field: new discoveries complicate the
panorama

The outlined picture of the formation and evolution of black widow pulsars was the most
widely accepted in the scientific community.
In support of their production in GCs there were, until 2007, only three BWPs found in
the Galactic field, namely PSR B1957+20, PSR J2051-0827 and PSR J0610-2100 (Table
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3.1). Given that the probability of close encounters in the field is significantly small, these
system were thought to be formed in globulars and, for some reason, then ejected. For
instance, a dynamical event could have thrown them away, or their cluster might have
disrupted; this was the argumentation given for explaining such unlike cases.

However, in the very recent years, new Galactic surveys made with the 100-meter dish of
the Green Bank Telescope (West Virginia) and the 64-meter dish of the Parkes radio tele-
scope (New South Wales, Australia) have been carried out. Their extreme sensitivity (par-
ticularly important for systems with short orbital periods, see Section 3.4) has led to the
discovery of many new sources in the Galactic field. In addition to this, γ-ray surveys with
the Fermi Gamma-ray Space Telescope with its LAT (Large Area Telescope) instrument,
contributed to the discovery of a handful of new ones [42]. Thanks to all these discover-
ies, new studies have flourished in recent years focusing on the evolution of low-mass and
very-low-mass binary pulsars (VLMBPs) [49], while a new class of systems (dubbed ultra
low-mass binary pulsars) is also emerging [25] with companions of ∼ 0.001 M�, typically
an order of magnitude less massive than the companions of VLMBPs.

3.3 Pulsar/stellar wind interaction

A fundamental role in our comprehension of the underlying causes of the eclipses is played
by the interaction between the pulsar relativistic wind, powered by the pulsar spin-down
energy, and the stellar wind (induced by the pulsar flux or due to the nuclear evolution)
coming from the companion. Under the picture by which it is the outflowing matter to
be responsible for the partial or total disappearance of the pulsed radio signal, it becomes
crucial to try to understand what effects on the evaporating plasma such a process can
have. The reciprocal interaction highly influences the properties of the resulting gas cloud
which surrounds the star: both the shape and and density profile of the outflow will be in
some way affected, and that will in turn reflect on the observed features.

A lot of authors tried to give answers in this regard with analytical or numerical models.
Many of them also agree on the basic properties of the resulting physical situation and it
is worth reviewing here the most significant proposals.

Rasio et al. [18] first attempted to explain the observational data of PSR 1957+20 with
the aid of a simple numerical model. Special care were taken in trying to retrieve the
evident asymmetry in the excess time delays at ingress and egress (see Section 3.7 and
Figure 3.6). They realized that the only way to get such a behavior was to take into
account all the forces present in the system, i.e. gravitational, centrifugal, Coriolis and
that of the radiation pressure. In particular the latter two cause the plasma flow to assume
a “cometary” shape along the orbit, as their simulations actually show. The shape was
obtained treating the particles as following ballistic trajectories after a large number of
them had been ejected isotropically from the surface of the companion (whose radius was
set toRc = 0.15 R�) at a constant rate. The density profile was also calculated numerically
point by point by binning the particles. In their work, they remark the fact that, in such
a model, the only free parameters were the ejection velocity vejec at the surface of the
star and the constant ratio between the radiation and gravitational forces Frad/Fg acting
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on each particle2. The result of the simulations for PSR 1957+20 is shown in Figure
3.2a, where a sharp contact discontinuity at the boundary of the cloud is clearly visible.
The same method was used by the author to model the eclipses of another important
black widow pulsar, PSR 1744-24A, with the parameters adjusted in order to match its
observational properties [19]. In this case, the main difference with respect to the previous
one was the fact that the ejection of the particles was made occur only from the heated
side of the companion. The resulting outflow shape is highly asymmetric and can be seen
in Figure 3.2b.

19
89
Ap
J.
..
34
2.
.9
34
R

(a) Gas cloud shape as resulted from numerical simu-
lations performed by Rasio et al. [18]. Each dot repre-
sents a test particle whose ballistic trajectory has been
computed numerically. The two solid lines show the
observed positions of the radio eclipses at 430 Mhz
in PSR 1957+20. The dashed lines indicate instead
the appearance and disappearance of the excess time
delays in the same source (see also Figure 3.6).
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(b) Similar to (a) but with different pa-
rameters values in order to agree with
observational data of PSR 1744-24A and
with only the heated side of the compan-
ion ejecting test particles [19].

Figure 3.2

Bosch-Ramon et al. [53] instead performed relativistic hydrodynamical simulations in two
dimensions to study the evolution of shocked stellar and pulsar winds on time scales in
which the orbital motion (especially through the Coriolis force) plays an important role.
Their results, despite obtained by means of a totally different approach and with many
more effects (such mass, momentum and energy exchanges between the pulsar and the
stellar wind) taken into account, substantially agree with the approximate bow-shaped
shock structure also found by Rasio.

Analytical techniques were rather used by Lipunov and Prokhorov [33] to model the in-
teraction of an ejecting pulsar with the matter by which it is surrounded. As explained in
their article, a pulsar experiences its ejector phase during its lifetime when it is observ-

2Note that this ratio does not depend on the distance from the center of the companion since both
forces scale as r−2.
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able in the radio wavelengths also emitting a strong relativistic wind. Even though the
ejector phase was introduced for young pulsars, we can investigate the hypothesis that a
black widow pulsar is in such a phase. They assumed the principal emission mechanism
of the pulsar to be the magneto-dipole radiation (Section 1.3.1), whose produced energy
is carried away in the form of low-frequency radiation and relativistic particles with an
associated luminosity Lp. In this way, at a distance r, the experienced radiation pressure
is Prad = Lp/4πr

2c. This latter acts on the surrounding plasma and a surface of pressure
balance can then be determined. They found an analytical expression for its boundaries
by equating the pressure of the relativistic pulsar wind with the ram pressure of the matter
spilling off the companion. In the case of spherical accretion this latter is Pg = Ṁcvw/4πa

2,
where a is the orbital separation, Ṁc is the mass loss rate of the companion and vw is
the stellar wind speed. In particular, they showed that an open or closed cavern around
either the companion or the pulsar, depending on the relative “strength” of the two winds
(Figure 3.3a), must form. In the case of black widow pulsars, the stellar wind is induced
by the pulsar radiation and thereby we expect its strength to be much lower than that
of the pulsar. The cavern will thus form around the companion: if open, the shape of its
boundary resembles a paraboloid; if closed, it is very similar to an ellipsoid where the star
approximately occupies one focus (Figure 3.3b). Keeping in mind all the limitations of all
such simple models, they will anyway be very useful for our successive modeling of the gas
cloud shape and density.
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(a) Different boundaries for an open cavern for
different values of the Shvartman radius, a pa-
rameter dependent on both the pulsar luminosity
and the stellar wind intensity [33]. Formally, it

is defined as rSh =
√
Lp/Ṁcvw c with the same

meaning for the variables as explained in the text.
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(b) Geometry of a closed cavern formed around
the NS [33]. A symmetrical situation occurs,
with the closed cavern built up around the com-
panion, in the case of a pulsar wind much
stronger than that of the star, that is the typ-
ical situation occurring in black widow pulsars.

Figure 3.3

3.4 Timing in the presence of eclipses

Particular care must be taken when dealing with data of eclipsing binary pulsars. Soon
after the discovery of one of them, the first timing solution is probably very rough. If one,
as normally happens, wants to refine the solution, must pay attention to the procedure he
follows.
If one proceeds as usual, trying to find a finer timing solution from all the available data
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(that is, at all orbital phases) the result will probably be very bad and the timing solution
quite far from the real one.
The remedy is to extract the finer timing solution only from residuals relative to off-eclipse
pulse TOAs, excluding all the pulse profiles which could probably be affected by the gas
cloud. Once the best timing solution has been found, one can use the new ephemeris
so obtained to calculate the TOA residuals at all the orbital phases where a signal is
significantly detected. By convention, the orbital phase is defined to be zero at the pulsar’s
ascending node. In this way the eclipses are most often centered around the phase of about
φ = 0.25, corresponding to the phase at which the pulsar is at the farthermost position
with respect to us.

Also, of crucial importance, for eclipsing binaries, is the pulsar signal strength. The more
time resolution one has, the more TOA residuals around the eclipse can extract, which in
turn allow one to better constrain the physical parameters of the eclipse process. On the
other hand, in order to have reliable values for the residuals, the pulse profiles must have a
high S/N ratio, which can be increased by folding longer sub-integrations, thus losing time
resolution. If a pulsar is intrinsically faint, the only option is to make repeated observations
and derive an average behavior of the system during the eclipse event. Obviously, this
approach may hide effects occurring only rarely in the succession of the eclipses, but it is
often the only possible way of studying these processes.

3.5 Optical counterparts studies

Another powerful tool is the study of the optical light curve. Optical data can tell us
precious information about the nature of both the companion and the interaction between
the latter and the pulsar. The shape of the curve allows us to make considerations of
great relevance only through simple reasoning. For example, a peak at the pulsar inferior
conjunction (φ = 0.75, i.e. when the companion’s side that faces the pulsar points toward
the observer) would suggest that the pulsar is indeed illuminating the star and, thus,
probably ablating it. Alternatively, we could see a double peak at the two orbit quadratures
(φ = 0.0, 0.5), which can be explained easily if the companion is being deformed by
tidal interactions with the neutron star. The ellipsoidal shape would also make the star
overflow its Roche lobe, provoking a matter spill; in such a case, irradiation effects could
be reasonably negligible. Other physical properties, such as temperature, radius etc.
can be retrieved by comparing the color-magnitude diagrams with the observed optical
properties.
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3.6 Eclipse mechanisms

In this section we review the most commonly invoked mechanisms that can account for
the periodic disappearance of the pulsed signal in eclipsing binaries, namely:

• Free-Free Absorption

• Raman Scattering

• Plasma frequency cut-off

• DM Pulse Smearing

All the models are based on the hypothesis that the responsible for such processes is a
low-density highly-ionized gas cloud spilling off the companion, which can be released as
a stellar wind. The effects can also be classified in different categories: The first three are
actually absorption processes by which part or all of the radiation is intercepted by the
cloud, resulting in a decrease or in the disappearance of the total flux density. The pulse
smearing is instead different in nature, since it is an effect that is linked to the way pulses
are revealed: in this case, as we will see, the signal is still present but it does not come
out because of a varying dispersion measure.

3.6.1 Absorption effects

Let us start off with the well-known radiative transfer equation:

dIν
dl

= −κνIν + jν (3.1)

where Iν is the specific intensity, ([Iν ] = erg s−1 cm−2 ster−1 Hz−1), jν is the specific
emission coefficient ([jν ] = erg s−1 cm−3 ster−1 Hz−1) and κν is the specific absorption
coefficient ( [κν ] = cm−1), representing the variation in intensity of a radiation beam as
it travels a distance dl.
For our purposes of studying eclipse mechanisms in the radio band, we can safely assume
jν = 0, so that eq. (3.1) reduces to:

dIν
dl

= −κνIν (3.2)

whose formal solution is:
I(s) = I(0)e−

∫ L
0 κν(l)dl (3.3)

where L is the length of the optical path. It is also common practice to define the dimen-
sionless quantity Γ, called optical depth, as follows:

Γ
.
=

∫ L

0
κν(l)dl (3.4)

This will be very useful for our theoretical analysis. In fact, in order to investigate the
physics of BWPs, what we have to do is to find some form for the absorption coefficient
κν corresponding to the particular considered physical process; then we have to integrate
it along the line of sight to finally get the total optical depth; in this way we will be able
to predict the absorbed fraction of the total flux density as a function of the orbital phase,
which we can compare, in principle, with observational data.
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Free-Free absorption

Also known as inverse bremsstrahlung, free-free absorption is the main candidate for ex-
plaining the eclipses in most of the systems, since it manages to account for almost all the
features usually observed.
In general, we have bremsstrahlung emission when free electrons move in the Coulomb
fields of other nuclei, by which they are decelerated and thereby forced to emit radiation.
In doing that, electrons are not captured and they pass from a free state to another such
state; from that the name free-free emission. Analogously, we can refer to the process
by which an electron, moving in an electrostatic field, absorbs an incoming radiation as
free-free absorption.

The most widely used implementation is the one in which the involved particles follow
a Maxwellian distribution of velocities, i.e. they are in thermal equilibrium. For this
reason this case is referred to as thermal bremsstrahlung. To get the relative absorption
coefficient, it is first convenient to start from the emission coefficient. It can be shown
[43] that the total emitted power per unit volume and frequency f at a temperature T
is:

dE(T, f)

dfdV dt
=

25πe6

3mec3
·
(

2π

3kBme

)1/2

· 1

T 1/2
Z2 ne ni e

−hf
kBT · ḡff (3.5)

where ni is the ion number density, Ze is their charge, kB is the Boltzmann constant,
me is the electron mass. The quantity ḡff is called the Gaunt factor and accounts for
corrections of quantum nature.
Now, Kirchhoff’s law for thermal emission gives the relation between the emission coeffi-
cient and the associated absorption coefficient, namely:

jff (T, f) = κff (T, f)B(T, f) (3.6)

where B(T, f) is the brightness of a blackbody. From this we can get the absorption
coefficient and express it in the more convenient CGS units:

κff (T, f) =
1

4π
· 6.6 · 10−38Z

2 ne ni

T 1/2
ḡff

c3

2hf
· e

−hf
kBT cm−1 (3.7)

Since, for pulsars, we are dealing with radio waves, hf/kBT � 1 certainly holds, so that
we can approximate eq. (3.7) as:

κff (T, f) = 0.173

{
1 + 0.13 log

(
T 3/2

Zf

)}
n2
e

T 3/2f2
(3.8)

Raman scattering

This process belongs to the class of non-linear absorption mechanisms, those in which the
non-linear interaction of electromagnetic waves with other waves or electrostatic fluctua-
tions (the so-called plasmoms) occur in the considered plasma. The interaction between
electromagnetic waves and plasmons can be described according to the kinetic wave equa-
tion [51], which is in turn split into two parts:

• The interaction of the waves with electrons (e) or ions (i): t+ e(i)↔ t+ e(i)
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• The interaction of electromagnetic waves with other waves of the same or of different
nature: t↔ t+ l, t↔ l + l, t↔ t+ t

where t is a transverse electromagnetic wave and l is a plasmon. The second category is
defined as three-wave processes. Gedalin & Eichler [22], in considering such mechanisms
as a possible cause for pulsar eclipses, pointed out that only the first of the three-wave
processes is actually relevant in the environment of black widow pulsars. Non-linear ab-
sorption mechanisms are also said to be induced, since their cross sections are proportional
to the number of waves. If we suppose to have a turbulent plasma, i.e. with a sufficient
number of plasmons (so that the process is favored in one direction, t ← t + l) we can
regard it as the Induced Raman Scattering.

It can then be shown that the total optical depth of a plasma, due to this phenomenon,
can be approximated as [22]:

Γ '
√

3 ·
∫
dl

ωp
4π2c

(
ωp
ω

)2( kBT
mec2

)2(mi

me

)
(3.9)

Plasma frequency cut-off

We have already argued, in Section 2.1.1, that electromagnetic waves passing through an
ionized gas, cannot propagate anymore if its wavelength exceeds a certain threshold. This
phenomenon, which we call here plasma frequency cut-off, can in theory be responsible for
the disappearance of the signal under a certain frequency. To have a idea of the orders
of magnitude necessary to trigger such a mechanism, we can rewrite eq. (2.7) in a more
practical form with respect to the typical values of observing frequencies:

fp = 9.3 MHz ·
√

ne
106 cm−3

(3.10)

The only physical quantity on which fp depends is the electron number density. That
means that such a mechanism cannot explain any possible frequency dependance of the
typical observables, such as the eclipse duration, the TOA residuals etc. Many eclipsing
pulsars do show different behaviors at different wavelengths and the plasma frequency
cut-off cannot account for them at all.
In addition to this, it is easy to see that, in order to bring about eclipses at the usual
observing frequency magnitudes (100 ÷ 1000 MHz), the electron number density should
be of about 109÷10 cm−3 [18]. These figures are at least one or two orders of magnitude
higher than the average values of ne which can be deduced by the analysis of the TOA
time delays at the ingress/egress phases of the eclipse, in most of BWPs.

Nonetheless, it has been pointed out [52] that we might not want to consider the average
density, since the plasma frequency cut-off only depends on the local electron density.
For this reason, even if the average value is actually ne ∼ 106 cm−3, we could have a
layer of a much higher ne with respect to the rest of the cloud, where fp & fobs; such a
situation can actually occur in the presence of a contact discontinuity, for instance like
those characterizing shock boundaries, which can indeed form from the interaction of
the companion’s wind with the pulsar’s radiation pressure (Section 3.3). All of this must
anyway be confronted with the consequent evaporation time scale τevap that such a scenario
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would imply: the high-density gas of the contact discontinuity has to be continuously
replenished by new matter coming from the companion, which in turns implies a certain
mass loss rate Ṁc. From that, one can guess the approximate lifetime of the star, under the
hypothesis of a steady mass flow, (τevap = Mc/Ṁc). The evaporation time scale gives us
an indirect measure of the probability of spotting the source during the ablation process:
the shorter τevap the lower the probability of detection.

3.6.2 DM pulse smearing

When we have a fine timing solution for the pulsar, obtained by the data relative to the
off-eclipse orbital phases, we are taking into account the effect of dispersion due to the
ISM, but we are neglecting any other possible effect that could change the DM. At orbital
phases near superior conjunction, given a proper system orientation, the pulsar signal
crosses the ionized regions of the companion’s atmosphere before reaching the observer.
This implies a higher column density with respect to that of the only interstellar medium,
and hence the plasma cloud from the ablated companion will give an extra-contribution
∆DM(φ) to the dispersion measure, dependent on the considered orbital phase φ.
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We can formally express it as:

∆DM(φ) =

∫

cloud
nedl (3.11)

where the integral is performed along the part of the
line of sight actually crossing the cloud at the par-
ticular orbital phase. This additional dispersion mea-
sure has two major observable effects. The first one is
that the pulse profile obtained by summing different
frequency channels results broadened. More precisely,
what happens is that the two extreme frequency chan-
nels of frequencies fmin, fmax will experience a relative
delay of:

∆tsmr(φ) = D ·∆DM(φ) ·
(

1

f2
min

− 1

f2
max

)
(3.12)

for the same reasons as explained in Section 2.1.1.
Calling W the total pulse width, it is straightforward
to understand that ∆tsmr = ∆W , as shown in Figure
3.4. If the total pulse width becomes comparable to
the pulsar period (W ∼ P ), the smearing due to the
∆DM can make the pulsed signal completely disap-
pear.

It is worth remarking that this effect does not cause
any decrease in the total received flux density, but
only in its pulsed component; this implies that the
continuum signal (i.e. the radio signal averaged over
a pulsar rotation) remains the same and it is not influenced at all by that. For the above
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reasons it would be of fundamental importance to have both the pulsed and continuum
signals of single observations, in order to understand if the DM pulse smearing is the
actual mechanism to cause the eclipses. If, corresponding to the pulsed signal eclipse, we
do not witness any significant decrease of the continuum flux, we can be fairly confident
that this latter mechanism is the true responsible. Unfortunately, most of back-ends
used in modern single-dish radio telescopes discard the profile baseline during the on-line
folding procedure, so that it is impossible to retrieve it later. Parallel observations of the
continuum component are then necessary with another suitable telescope.

Correlation with time delays

There exists another powerful method to probe whether the actual responsible for the
eclipses is the DM smearing or not, that is the strong correlation between the observed
excess time delays and pulse widths.

Also after being summed in frequency, the resulting signal at the particular frequency fc,
(which is actually the central frequency of our receiver band) is delayed because of the very
same excess dispersion measure ∆DM that caused the pulse broadening. Consequently,
the TOA residual relative to the orbital phase φ, will be:

∆ta(φ) = D ·∆DM(φ) · 1

f2
c

(3.13)

We can thus relate the smearing of a pulse to the delay in its time of arrival. Dividing eq.
(3.13) by eq (3.12), we get:

∆ta
∆tsmr

=

1
f2c

1
f2min
− 1

f2max

(3.14)

Hence:

∆ta =

(
1

f2
c

· f2
minf

2
max

f2
max − f2

min

)
·∆tsmr (3.15)

We can also express the final pulse width as the sum of the off-eclipse pulse width W0

(which depends both on the shape of the radio beam and on the single channel bandwidth)
and the additional contribution due to the extra DM, ∆W :

W = W0 + ∆W = W0 +

(
f2
c ·

f2
max − f2

min

f2
minf

2
max

)
·∆ta (3.16)

Solving for ∆ta, we obtain:

∆ta = − W0(
f2
c ·

f2max−f2min

f2minf
2
max

) +
W(

f2
c ·

f2max−f2min

f2minf
2
max

) (3.17)

From eq. (3.17) we see that, if the eclipses are indeed provoked by an ionized cloud that
contributes to increase the DM, we expect a linear correlation between residuals and pulse
widths near the eclipse phases. Both the quantities are easily measurable from the only
pulsed signal, without any need for a continuum component.
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3.6.3 Refractive models

In addition to the previously analyzed absorption and smearing processes, one can also
consider another class of possible effects. These are grouped under the definition of re-
fractive models; basically, they are either the reflection or the bending of the optical path
of the emitted signal and require the plasma frequency inside the ionized cloud to be of
the order of the observing frequency (fp ∼ 1 GHz).
As for any respectable model, they must in turn account for as many observed character-
istics as possible. Refractive models are satisfactory for some of them, but cannot explain
some others [19]. Among the features which seem to fit well with such models are the
predicted small evaporation time scales, of only ∼ 107 yr. This would perfectly agree with
most of the proposed evolutionary scenarios besides justifying a possible disappearance of
the companion (thus explaining the existence of isolated millisecond pulsars) and the very
small probability of spotting such systems.

However, important faults prevent them from being considered the preferred models, at
least for most of the eclipsing systems discovered so far. First of all, they cannot explain
the frequency dependance of the eclipse duration: reflection mechanisms would predict no
dependance at all whereas refractive bending ones would, but could hardly fit the observed
data of the historical eclipsing systems. Another major reason is related to the maximum
plasma density at the border of the cloud. By simply requiring total energy conservation
[19], it can be shown that, necessarily:

ρ(RE) < ρmax ≡
LpR

2
c

8πa2v3
fR

2
E

(3.18)

Here Lp is the pulsar spin-down power, Rc is the companion radius, a the orbital sep-
aration, vf the mass outflow velocity and RE the radius of the eclipsing region. Some
simplifying assumption have been made: for instance, the mass outflow and, consequently,
the eclipsing region were assumed to be spherically symmetric. Using typical values in
eq. (3.18), like those of system PSR 1957+20, one soon realizes that ρmax is at least two
orders of magnitude smaller than the value required for refractive effects, even with the
most conservative hypotheses.

3.7 PSR 1957+20: the prototype of the BWP

Special attention deserves PSR 1957+20, the first eclipsing binary system ever discovered
[21]. It is composed of a millisecond pulsar (P = 1.61 ms) along with a very low mass
companion showing evidence of ablation. For this reason, at that time, it was believed to
be the missing link between LMXBs and the rarely observed isolated millisecond pulsars.
The main characteristics are summarized in Table 3.3.

We can notice the extremely low eccentricity, the low spin-down rate and the orbital period
of a few hours. Observations of pulses over many orbits revealed the presence of regular
eclipses lasting 55 minutes on average (depending on the observing frequency), about 10%
of the orbital period. A simple calculation, based on such data, can show that the radius
RE of the eclipsing region (assuming it to be spherical, for the sake of simplicity) is much
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PSR B1957+20

Period, P [ms] 1.607

Period Derivative, Ṗ 1.61 ·10−20

Eccentricity, e . 2 · 10−5

Companion Mass, Mc [M�] ' 0.022 M�
Orbital Period, Pb [h] ' 9.17

Dispersion Measure, DM [pc cm−3] 29.1

Spin-Down Energy, Ė [erg s−1] 7.48 · 1034

Table 3.3: Brief summary of the main characteristics of PSR B1957+20, the prototype of all black
widow pulsars.

larger than the Roche lobe radius RL of the companion; in fact we have RE ' 0.75 R�
whereas RL ' 0.3 R�. This consideration suggested that the eclipsing medium had to be
in some way continuously replenished by the companion’s atmosphere; the most probable
mechanism, given the absence of heavy accretion which would have obscured the signal, is
the evaporation of the companion caused by the pulsar spin-down irradiated power.

Due to its faintness, observations of the source were carried out with the 305-meter wide
Arecibo radio telescope in Puerto Rico. The procedure for getting the physical parameters
was the classical timing analysis based on the measurements of the times of arrival of the
integrated pulse profiles at the off-eclipse orbital phases. We can see in Figure 3.5 some
integrated profiles at different frequencies; interpulses, i.e. pulses shifted by 180◦ in pulse
phase with respect to the main pulse, are clearly visible in each of them. From the analysis
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Figure 3.5: Integrated pulse profiles for PSR B1957+20 at different frequencies.

of barycentric TOAs, a plot like that of Figure 3.6a could be obtained. What immediately
results evident is the total disappearance of the pulses in a large fraction of the orbit.
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Looking at the TOA residuals of Figure 3.6a, we can see that they get larger and larger,
showing deviations with respect to the timing solution, as the pulsar approaches the eclipse
region; this can be imputed to the presence of the gas cloud itself which, with its additional
electron column density, causes the signal to be delayed. The thicker the cloud along the
line of sight, the higher the delay. It is also worth noticing the asymmetry between the
pre- and post-eclipse delays, the latter being significantly larger than the former. This
indicates a possible asymmetry of the eclipsing cloud, possibly due to the combined effects
of radiation pressure and Coriolis forces of the orbital motion; we could then expect a
cometary-like shape for the cloud, rather than being spherical.
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(a) Measured TOA residual as a function of the
orbital phase for PSR B1957+20.

Light curve of PSR B1957+20 1119

Table 2. Orbital Parameters of PSR B1957+20 system used in the ELC
modelling.

Parameter Value

Companion massa 0.022 M!
Orbital perioda 9.17 h
log Lspin−down

a 35.20 erg s−1

Companion effective temperatureb 2800 K
Inclinationc 50◦–80◦

f c ∼ full

aFruchter et al. (1988); bFruchter et al. (1995); cCallanan et al. (1995).

3.1 The model

The ELC program requires a number of input parameters before
modelling the light curve: the initial parameters used are given in
Table 2. The temperature dependent gravity darkening exponents
of Claret (2000) were used. We initially attempted to model the
system as a blackbody (T ∼ 2800 K); however, the results were
unsatisfactory. While the code had no problem in fitting the ob-
served light curve at maximum, it was completely incapable of re-
producing the observed minimum (the model was consistently too
luminous during eclipse). We then employed the NEXTGEN model
atmospheres of Hauschildt, Allard & Baron (1999a) and Hauschildt
et al. (1999b), and using our blackbody model as our starting point,
we proceeded to model the light curve. The pulsar mass was set
to the canonical value of 1.4 M!. We then varied the following
parameters: inclination and mass ratio of the system, Roche lobe
filling fraction (f), temperature and bolometric albedo (a) of the
secondary star and the irradiating luminosity. The geneticELC al-
gorithm (based on the PIKAIA routine of Charbonneau 1995) was
used to search for the best-fitting values. The best-fitting R-band
model is displayed in Fig. 2. We see that there is excellent agree-
ment between the fit and the data (χ2

ν = 1.06). The largest devi-
ations occur at orbital phases φ > 0.65, but even these are well
within the errors. This discrepancy is due to the relative faintness of
the companion at these phases, and poorer seeing conditions during
these observations. As a check on the validity of the model we used
our limited Ks-band data, as displayed in Fig. 3. We see that the fit
agrees with these data very well.

Given that the mass of the pulsar is currently unknown, although
most evolutionary scenarios suggest that it will have accreted a few
1/10th of a solar mass from the secondary, we decided to repeat
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Figure 2. The best fit to the combined R-band data with residuals (in-
set). Two orbital phases are displayed for added clarity. The pulsar mass is
1.4 M!. The best-fitting inclination is i = 64.4+1.◦3

−1.2 (3σ ) with a χ2
ν = 1.06.
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Figure 3. The simultaneous fit to the K-band light curve corresponding to
the R-band fit in Fig. 2.

the above procedure for a number of other primary masses in the
range 1.3 < MMSP < 1.9 M!, to investigate the effect of the pulsar’s
mass on our estimates of the mass ratio and orbital inclination of
the system.

4 R E S U LT S

4.1 Inclination

At a given pulsar mass the inclination was constrained to within
∼ ±1.◦2, that is, for a pulsar of mass 1.4 M!, i = 64.4+1.◦3

−1.2 (see
Fig. 4), and overall for the above range of pulsar masses we find the
inclination of the system to be in the range, 63◦ ≤ i ≤ 67◦, at the
3σ level.

4.2 Pulsar mass

The value of χ 2
ν exhibited only a nominal increase as the mass of

the pulsar was increased from 1.3 to 1.9 M!: hence our models are
unable to constrain this parameter.

4.3 Roche lobe filling factor

At no point in our attempts to model this system were we able to
obtain an acceptable fit for a secondary filling its Roche lobe. For
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Figure 4. The graph of χ2 versus i for a pulsar of mass 1.4 M!. Mini-
mum occurs for χ2

ν = 1.06 and an inclination, i ∼ 64.◦4. The 68, 95 and
99 per cent confidence levels are illustrated.
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(b) Optical light-curve for PSR B1957+20. Note
the different convention adopted by optical pho-
tometry for the orbital phases.

Figure 3.6

3.7.1 Optical light curve

Optical studies were also carried out in order to reveal the companion. The spin-down
luminosity of PSR 1957+20 turned out to be remarkably high (Ė ' 4π2IṖP−3 ' 20 L�),
sufficient to make the other star’s surface hot enough to let it evaporate. Moreover, the
optical luminosity suggested the companion’s radius to be about Rc ' 0.15 R�, confirming
all the previous guesses about the absence of any Roche lobe overflow.

Reynolds et al. [37], in 2005, put new constraints on the physical properties of the compan-
ion as well as on the inclination of the system, thanks to new data taken from the Hubble
Space Telescope (HST) in optical Ks and R-band. Previous efforts to put constraints from
optical data were vane because of the undetectability of the source around minimum of
the light curve, a problem which has been overcome by HST. A fit on the data of optical
magnitude as a function of the orbital phase was performed, varying the inclination i,
the Roche lobe filling fraction fRL, the temperature and bolometric albedo3 aTB of the
companion, as well as the irradiated luminosity of the pulsar, Lp. They looked for the set
of parameters which achieved the best fit both on optical data and on the timing residuals.
The result is shown in Figure 3.6b. The best agreement is attained with i = 64.4◦ for a
pulsar mass of Mp = 1.4 M�. Spanning the latter in the range 1.3 < Mp < 1.9 M�, the

3The bolometric albedo is defined as the ratio between the reradiated energy to the irradiance energy.
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inclination is constrained in the range 63◦ < i < 67◦ at the 3σ level. More interesting
are the values obtained for Roche lobe filling fraction, i.e. 0.81 < fRL < 0.87, meaning
that the companion is quite far from a matter spill through the Lagrangian point L2.
This result has to be compared with the considerations made on the eclipsing region size,
which turned out to be much larger than RL, confirming the hypothesis of an ongoing
atmosphere evaporation.

The last free parameter that is worth to discuss is the observed temperature of the com-
panion at maximum and minimum, corresponding to the illuminated and unilluminated
side, respectively. With the previous range of the pulsar mass, they found an effective
temperature of Tmax = 8300± 200 K and Tmin = 2900± 110 K at 3σ. Simulations, which
also took into account hydrodynamical effects, showed that such a high temperature gra-
dient between the two hemispheres is actually sustainable, no matter if the companion is
degenerate or not degenerate.

Regarding the nature of the secondary star, these optical studies are of fundamental value.
In fact, the color information let us be sure that the hypothesis of a cool white dwarf must
be ruled out: both the R− I magnitudes and the derived radius Rc ' 0.3 R� are too high
for such a case. Rather, their values are in agreement with a possible late M-type dwarf.
However, the mass function of the system suggests a value for the companion’s mass that
is likely well below the threshold of the hydrogen-burning limit (M > 0.08 M�), making
very probable for the star to belong to the class of brown dwarfs.

3.7.2 X-ray spectrum

A striking feature to be noticed of the optical light curve is its very high symmetry, in
contrast to the visible asymmetry in the TOA residuals. This is a compelling evidence that
the modulation in the optical data is given by the emission of the companion’s surface,
rather then the surrounding gas cloud. Moreover, this indicates that a possible intra-
binary shock between the pulsar wind and the evaporating gas is not visible at optical
wavelengths but must be searched in other bands.

Recent studies, conducted though a phase-resolved spectral analysis, have shown non-
thermal X-ray emission that must necessarily be due to an intra-binary shock, formed by
the interaction between the pulsar wind and the ablated gas.

Huang et al. [40] used Chandra observations, covering more than five consecutive orbits,
for searching for a modulation in the X-ray flux as a function of the orbital phase. To
probe the hypothesis of the intra-binary shock, they analyzed the observed X-ray spectrum
separately between the orbital phases φ = 0.05−0.45, which covers all the eclipsing process,
and the rest of the orbit (φ = 0.45− 1.05). The phase-resolved spectral analysis revealed
an orbital dependance of the spectrum properties; in particular, performing χ2-tests, they
spotted a marginal intra-binary modulation which induces to associate the non-thermal
component of the X-ray spectrum with the interface between the pulsar wind and the
ablated material.



Chapter 4

A Python code for eclipsing
binary pulsars

One of the crucial parts of this thesis work was the development of a powerful code for
studying eclipsing binary systems. The code had to be, in the author’s intention, highly
scalable and adaptable for the many different situations one could come across, especially
in the perspective of a more complicated panorama in the years to come. It also had to
be able to simulate different eclipse mechanisms, to adjust itself to the various system
geometries and to compare theoretical results with experimental data.

4.1 Why Python

The language in which the code was written is Python, and the reasons for this choice are
many. First of all, Python is one of the most modern object-oriented, high-level program-
ming languages currently available, for it boasts a number of features which simplify a lot
the development of a software; among these we recall the dynamic typization, the variety
of flexible data structures (such as dictionaries and lists), the dynamic memory alloca-
tion. Moreover, Python is spreading more and more in the scientific and, in particular, in
the astronomical community; this guarantees future support and integration with other
softwares and libraries. Indeed, literally hundreds (probably thousands) of astrophysics
libraries for Python are currently available for the most various purposes, from coordinate
transformations to fitting algorithms, to databases of astrophysical sources.

4.2 Why V-Python

The choice of including a 3D visual graphics library was not driven only by aesthetic moti-
vations. V-Python is also a powerful tool that allows to handle tridimensional geometries
in a much easier way with respect to standard analytical calculations. Indeed, it includes
routines for creating, modifying and animating complex 3D shapes. Each 3D object, or
collection of objects, can have its own reference frame that can be oriented differently from
the main “scenery frame”; simple built-in functions let the developer pass from one frame
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to another in a tremendously easy way, which makes complicated analytical coordinates
transformations completely unnecessary.
Moreover, the real-time animation capabilities of V-Python result useful both for a pro-
grammer and for an astronomer. For the former they can work as a debugging tool,
allowing him to see what the code is doing instantaneously. For the latter they are very
useful as an analysis method, since one can see one or more theoretical curves drawing
while the binary system visually evolves.

4.3 Code structure and capabilities

In this section we briefly describe the code structure and the tasks it is able to per-
form.

The code is composed of over 4000 lines of Python instructions, organized in a “main”
flow and 65 auxiliary sub-routines. When launched, the code asks the user the effects
to take into account during the simulation (Figure 4.1). Then it asks if only one single
simulation is needed (for example if one just wants to study a single hypothetical scenario)
rather than acquiring data and performing a fit on them. In the latter case, depending
on the chosen effect, a file of TOA residuals, DM offsets or flux densities as a function
of the orbital phase must be indicated. The program then offers the user the possibility
of pre-processing the data, through a binning, in order to have a better statistic for each
interval of the orbit, and that can be very useful in the cases of plentifulness of data. The
binned data can also be saved as a new, separate file. Once the data is ready to be used for
the fit, the ranges of the involved free parameters are asked, while the fixed ones instead
come from an ephemeris file which must be given to the code. Then the fitting procedure
starts.
At the end of the process the code returns the ten best sets of parameters and allows the
user to plot the result of the simulation with each of those sets and, in case, write the
outcomes on a file, so that the user can later plot and compare the data with the best-fit
curves. In the next subsections we will examine the main features in greater detail.

4.3.1 Data acquisition and pre-processing

Experimental data, against which one wants to compare simulations, can be picked up soon
after the choice of the effects to account for. The function responsible for the acquisition
accepts file containing TOA residuals, DM offsets or flux densities as a function of the
orbital phase, which can be either the fractional mean anomaly or the fractional true
anomaly. In the former case a conversion is made (see Section 4.3.6) before performing
any simulations. This is because the code natively works on the rest frame of the pulsar,
which is then placed on the focus of the companion’s elliptical orbit; this implies the true
anomaly to be the most natural angle to work with.
The pre-processing consists in re-binning the data in intervals of the orbital phase. The
user has to choose the number of bins, then the program searches for all the points falling
in each bin and assigns to it the mean value and an associated error. The mean value can
be a simple arithmetic average or a weighted mean, whilst the associated error is normally
the error on the mean, i.e. the root mean square divided by the number of samples.
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Figure 4.1: Initial prompt of the code.

4.3.2 Different geometries and density profiles for the plasma cloud

The asymmetries sometimes seen at the eclipse ingress and egress phases of some black
widow pulsars makes it necessary to consider possible shapes, different than spherical, for
the eclipsing plasma cloud. In particular, we remarked the realistic hypothesis of some
cometary-tail shaped bow-shock clouds around the companion. For this reason, the code
contemplates four geometries, three of which can be seen in Figure 4.6; for each of them,
various possible density profiles are considered. Here the power of the visual module for
Python becomes evident: in fact, we can write each density profile with respect to the
most comfortable coordinate system for the considered case, where its expression is the
simplest. Its analytical form is indeed given in a cartesian frame of reference (x, y) in
which the companion, assumed to be point-like, is placed at the origin. In the same frame,
we use r to denote the distance from the origin, θ for the angle between the considered
vector (x, y) and the x-axis, so that tan θ = y/x. The pulsar is assumed to be at (a, 0),
where a is the usual orbital separation. To calculate the column density from the pulsar to
the observer we just have to integrate the contributions ne(l) along the line of sight, at the
various orbital phases. The advantage is that there is no need to rewrite the expression
of the number density as a function of φ; rather, for each sampled orbital phase, we can
directly use the built-in routines to pass from the “world” coordinates to the “cloud”
coordinates, and then use the simple expression of ne in the latter frame.

Sphere It is the standard geometry for a plasma cloud surrounding the companion. It
can represent an isotropically emitted wind on which neither the orbital motion nor
the pulsar radiation pressure substantially affects the outflow shape. The simulated
curve necessarily suffer from a symmetry around superior conjunction, and cases
such as PSR B1957+20 cannot be reproduced. The associated density profile is a
simple inverse power law with an index β, which we can write as:

ne(r) = ne(RE)

(
RE
r

)β
(4.1)
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where RE is the assumed radius of the eclipsing region and ne(RE) is the corre-
sponding local density. Both of them can be guessed by simple considerations based
on the observed TOA residuals.

Figure 4.2: Spherical power-law density profile.

Ellipsoid As highlighted by Lipunov [33], under particular conditions, a closed cavern
can form around the star from the strong interaction between the pulsar and the
stellar wind. Even though having an own analytical expression, we can approximate
the boundaries of such a cavern with an ellipsoid and put the companion at one
of the foci. This let us treat the possible density profiles in a simpler way. Given
its symmetry, it is given the possibility to slightly tilt the major ellipsoid axis with
respect to the pulsar-star direction by an angle θT (for example because of non-
negligible Coriolis forces), allowing the generation of asymmetrical results at ingress
and egress. The two possible density profiles are:

ne(x) =
nmaxe

(2sa)β
· (x− xf + sa)

β (4.2)

ne(x, θ) =
nmaxe

(2sa)β
· (x− xf + sa)

β ·
∣∣∣∣ cos

θ

2

∣∣∣∣ (4.3)

where nmaxe is the maximum local density, which occurs at the pulsar-side vertex
of the cloud, sa is the semi-major axis of the ellipse, xf is the x coordinate of the
ellipse focus. All the lengths are expressed in units of solar radii, so that they
result dimensionless. The relative scalar fields are shown in Figure 4.3a and 4.3b,
respectively. The two can be thought as rough test profiles for shocked closed caverns
formed by an isotropically emitted wind. In case a) the wind can be imagined to
be uniformly emitted from all over the surface, whilst in case b) we can think it
to be emitted from only the illuminated side of the companion. The possible free
parameters are nmaxe , the index β, the size of the ellipsoid and its eccentricity E , the
tilt angle θT .
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(a) (b)

Figure 4.3

Paraboloid In other systems the intra-binary bow-shock between the pulsar wind and
the ablated material forms an open cavern, whose boundaries can be reasonably
approximated by a paraboloidal geometry. As in the previous case the companion is
conventionally located at the focus and it is given the possibility of introducing an
asymmetry, by means of a tilt angle θT . The analytical expressions of the density
profiles are:

ne(x) = nmaxe · [−(x− xf − 1)]−β (4.4)

ne(x, θ) = nmaxe ·
∣∣∣∣ cos

θ

2

∣∣∣∣ ·
[
− (x− xf ) +

∣∣∣∣ cos
θ

2

∣∣∣∣
−β]−β

(4.5)

where all we said in the previous case about notation still holds, but is referred to
a parabolic shape. The adjustable parameters are: the quadratic coefficient of the
parabola on which the paraboloid of revolution is built, nmaxe , β, θT . The scalar field
of the two profiles can be seen in Figure 4.4.

(a) (b)

Figure 4.4
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Cometary tail It is the case in which the combined effects of orbital motion and pulsar-
stellar wind interaction generate a strongly warped tail in the gas cloud. This geom-
etry resembles that used by Rasio (Figure 3.2a, [18]) and is realized using a quadratic
expression for the symmetry axis and for the paraboloidal shape of the cloud with
respect to the former. That means that the curved symmetry axis has the analytic
expression y = Cx2 on the xy-plane whereas the boundaries of the comet are given
by an expression like d =

√
ξ/A, where ξ is the arc length calculated from the vertex

(Figure 4.5). The constants C and A are two free parameters which will be made
vary in our simulations. To simplify some calculations, in this case the companion
is assumed to be on the symmetry axis at the curvilinear coordinate ξ = 1/4A. The
density profile is identical to that of eq. (4.4), if one replaces x with ξ:

ne(x) = nmaxe · [−(ξ − 1)]−β (4.6)

y=Cx2

d

ξ

y

x

Figure 4.5: Cometary-shaped shaped gas cloud. The arc length ξ of a point on the parabolic
symmetry axis and its distance d from the cloud boundary are related by a quadratic expression,
namely ξ = Ad2. The density profile is the same as eq. (4.4), provided that one replaces x with ξ.

(a) Sphere. (b) Paraboloid. (c) Paraboloidal cometary tail.

Figure 4.6: Three possible shapes for the plasma cloud (in yellow) as seen with the 3D module
V-Python. The line of sight is in red and the observer is represented by the eye.

It is important to remark the fact that these density profiles are absolutely artificial and
have little or no physical justification. We chose them essentially for their ease of use,
since we are interested in their global effects. In other words, we first want to understand



CHAPTER 4. A PYTHON CODE FOR ECLIPSING BINARY PULSARS 64

whether a particular geometry can roughly reproduce the data and, if so, what are the
orders of magnitude of the relative parameters. From that, we might then further speculate
about the nature of the system.

Temperature profiles

All of the profiles that were presented above in describing the possible gas density distribu-
tions were also used to model the temperature profile of the cloud. In fact, we exploited the
fact that T ∝ (ne)

γ−1, where γ is the polytropic index. As for virtually all the relevant
astrophysical applications, our code contemplated the two main cases of an isothermal
(γ = 1) and an adiabatic (γ = 5/3) wind outflow.

4.3.3 Eclipse mechanisms and multi-frequency simulations

On the basis of the systems that we decided to investigate, we included a limited number
of effects than can be simulated by the code, namely the ones we have already discussed
in presenting black widow pulsars: Plasma Frequency cut-off, Free-Free absorption, Ra-
man scattering, Offsets in DM due to the cloud and the consequent DM smearing in the
integrated pulse profiles.

The importance of doing multi-frequency analyses (Section 3.6) is directly linked to the
different dependance on the frequency among the possible mechanisms. The code does
indeed have the capability of carrying out simulations at different frequencies at the same
time; when performing fits on multi-frequency data it is able to take all of them into
account and return the set of parameters which best reproduce the data at the various
wavelengths on the whole.

The program initially suggests a set composed of four among the most often used central
frequencies, namely 430, 820, 1390 and 2600 MHz, along with a bandwidth of 256 MHz. It
goes without saying that it also leaves the possibility for the user of modifying such values,
as well as of choosing a different number of frequencies to consider. When writing on a
file the results of a multi-frequency simulation, the user can select the one he is interested
in at that moment.

4.3.4 A basic fitting tool

The main use we can do of the code is comparing experimental data with theoretical
models and see which one best reproduces the observations. In this way we can put some
constraints on the value of the physical parameters or, at least, try to find the direction
toward which we should keep studying the system.

This function is implemented using a classic least-square algorithm on the variable:

χ2 =
N∑

i

(Yi − yi
σi

)2

(4.7)
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where yi are the experimental values with associated uncertainties σi ,and Yi are the
computed theoretical values. What the program does in this case is taking all the orbital
phases φi at which experimental points were acquired; then it calculates the theoretical
points Yi at exactly such phases, with the current particular set of parameters, and use
them to calculate the reduced chi-square, namely χ̃2 ≡ χ2/Nf where Nf are the degrees
of freedom, in our case corresponding to the total number of points. Then it looks for the
parameter sets which minimize χ̃2 and returns them to the user.

Even if there are a lot of efficient algorithms, able to span the parameters space in an
intelligent way that translates in a reduced computational time needed, we preferred to
initially opt for a basic brute-force algorithm, spanning the ranges of parameters uniformly.
In fact, despite its main disadvantage, i.e. its very low performance, especially in cases
which involve many parameters, this method let us be sure we do not to fall in any
local minimum of the χ2 variable, a problem which most of non-stochastic optimization
algorithms are subject to. Moreover, the data we had did not allow us to determine the
parameters to a high degree of accuracy and thereby the computational time was not a
real trouble.

4.3.5 Real-time graphs and integration with GNUPLOT

The visual library implemented in the code permits to have a graphical output of the
simulations. In particular, the program shows a tridimensional representation of the bi-
nary system, with the pulsar at the center of the frame and the companion’s gas cloud
orbiting around. The track of the orbit, along with its periastron in the case of a non-
zero eccentricity, is also shown. As already cited, the calculated curves can be displayed
simultaneously on an additional 2D plot of a separated panel (Figure 4.7).

Not of secondary importance is the possibility of plotting the results at a later time. Among
the tens of functions of the code, one is responsible for creating a GNUPLOT script through
which the produced data can be displayed. According to the particular calculation the
code has just made, it adjusts titles, labels, color schemes and other options in the most
adequate fashion for the kind of plot. In this way the only thing the astronomer has to
do is running the script in GNUPLOT with the command load to see the results.

4.3.6 Numerical methods

Among the functions, the code includes some routines for performing numerical estimates
of definite unidimensional integrals. In particular, this comes from the need to calculate the
electron column number density along the line of sight. The integration method on which
we based the function is the popular Cavalieri-Simpson method that, in its simplicity,
guarantees very good precisions with little computational costs.

In addition to this, we had the need of solving implicit functions, for example in passing
from the mean anomalyM to the true anomaly AT in eccentric orbits. For this purpose we
wrote the relative routine basing it on the Newton-Raphson method which also represents
a good trade-off among straightforwardness, precision and speed.
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Figure 4.7: The real-time multi-frequency plotting feature: while the companion orbits the pulsar,
the curves are correspondingly drawn. In the right-hand panels the red line is the line of sight of
the observer, represented by the eye. In the left-hand panels the mean flux densities, at the four
standard frequencies, are plotted against the fractional true anomaly. The artificial system, used
for the demonstration, has e = 0.7 and ω = 230◦. Even if drawn as having a net boundary, the
cloud was assumed to extend indefinitely.
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4.4 Testing the code: PSR J1740-3052

In order to make sure that the code was working properly, we tested it on a well-known
source, namely PSR J1740-3052.

Hosting a young pulsar along with a likely B-type main sequence star, PSR J1740-3052
is thought to be the progenitor of a HMXB [56]. Since its discovery in the late 90s,
many observations were performed at different frequencies at the Green Bank, Parkes,
Lovell and Westerbork telescopes, spanning 1997 to 2011, from which an accurate timing
solution has been extracted. The parameters so obtained point toward a system in which
the companion star ejects a strong wind, affecting the observed DM and, thus, the pulse
profiles.

PSR J1740-3052 [14]

Data Span [MJD] 50760 - 55622
Right Ascension (J2000), RA [hh:mm:ss.sss] 17:4050.001

Declination (J2000), DEC [dd:mm:ss.sss] -30:52:04. 3
Spin Period, P [ms] 0.570313411724(3)

1st Period Derivative, Ṗ [10−14 s s−1] 2.5504275(95)

2nd Period Derivative, P̈ [10−26 s s−2] 8.8(6)
Dispersion Measure, DM [pc cm−3] 738.73(8)

Orbital Period, Pb [days] 231.029630(2)
Eccentricity, e 0.57887011(19)

Longitude of Periastron, ω [◦] 178.646811(17)
a sin i [ls] 756.90794(14)

1600 MHz flux density [mJy] ∼ 14 mJy
Spectral Index ∼ -2.8

Companion’s spectral type G

Derived Parameters

Mass Function, f(Mc) [M�] 8.722676(3)
Inclination, i [◦] 53(7)

Table 4.1

We chose this system as a test for our code both for the plenty of information we already
have and for its peculiar features, which are listed in Table 4.1. In particular, the pulsar
spins with a period of 570 ms, shows a characteristic age of 0.35 Myr and orbits the
companion with quite a long period of 231 days. Although it does not show any eclipses,
it shows an orbital modulation in the dispersion measure, which peaks in the vicinity
of periastron passage (Figure 4.8); this behavior can be easily explained by a system in
which the pulsar orbits inside the companion’s wind. Ultimately, its high eccentricity
(e ' 0.58) is another crucial property that makes the system a valuable probe for the code
we developed.

Madsen et al. [14] fitted the data shown in Figure 4.8 through an MCMC algorithm
using an early B-type stellar wind model as responsible for the observed increases in DM.
Assuming the wind constituted only by hydrogen, the numeric electron density has the
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following expression [54]:

ne(r) =
Ṁ

vratio

1

vesc

1

4πmp

1√
1−Rc/r · r2

. (4.8)

Here Ṁ is the mass loss rate of the companion due to the wind, vesc is the escape velocity,
vratio is the ratio of the wind velocity at infinity on the latter, Rc is the companion’s
radius and r is the distance from the center of the star. Given its dependance on the only
radial coordinate, the geometry of the gas cloud to simulate was obviously chosen to be
spherical.

In performing our fit, four parameters were made vary:

• The inclination angle i, from which, together with the mass function of the pulsar,
the companion mass Mc and the orbital separation a were estimated.

• The companion’s radius Rc. Although there exist a relation between mass and radius
for main sequence stars, we preferred to leave it as a free parameter.

• The quantity Ṁ/vratio.

• The offset ∆. The value of DM obtained from the timing solution is supposed to
represent the contribution only due to the ISM and it is the baseline from which we
measure deviations. However, the extracted baseline might be lower or higher than
the actual value of DM due to the ISM and ∆ accounts for this possibility.

The result of our fit is shown in Figure 4.9. As is visible at first glance, the agreement with
Madsen’s result is excellent. Quantitatively speaking, both in Madsen’s and in our results
the reduced chi square found was χ̃2 = 1.04, confirming the goodness of the fit. In all the
calculations the pulsar mass was conventionally set to 1.4 M�. The procedure we adopted
was the brute-force fit routine on the data, over restricted ranges of the parameters. After
some trials, we resolved to use the following, physically meaningful, ranges:

• i = (45.8÷ 63.0)◦

• Rc = (4÷ 20) R�

• Ṁ/vratio = (1.5÷ 18.0) · 10−10 M�/yr

• ∆ = (0.05÷ 0.80) pc cm−3.

The best fit parameters and the relative reduced χ2 with the 1σ uncertainties are listed
in Table 4.2, along with the corresponding values obtained by Madsen.

The very close values allowed us to be confident that the code was working well also in
the presence of a non-zero orbital eccentricity.
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DM offset best-fit parameters
Parameter Madsen et al. BWP simulation code

i [◦] 53± 7 52.1± 0.6
Rc [R�] 8a 8.0± 0.5

Ṁ/vratio [M�/yr] 9+2
−3 · 10−10 (12.6± 0.4) · 10−10

∆ [pc cm−3] 0.41+0.15
−0.12 0.47± 0.04

χ̃2 1.04 1.04
aThe error in this parameter was not reported by Madsen,

since it was obtained interpolating over the relevant range of

main-sequence masses in Table 15.8 in Cox (2000).

Table 4.2

Timing PSR J1740−3052 3

(1996b) and references therein is used there to support the idea that
the companion is an early B-type star rather than a late-type super-
giant. Variations in DM in this model can be expressed as

∆DM =
1

1.1 × 10−9

(
Ṁ

vratio

)
I cm−3 pc, (1)

where Ṁ is the mass-loss rate of the companion in M" yr−1 and
vratio is the ratio of the wind velocity at infinity to the escape ve-
locity, expected to be in the range 1–3. I is the integral along the
line of sight to the pulsar from infinity, given by

I =

∫
1√

1 − R2/r

1

r2
dl, (2)

with R2 the radius of the companion and r the distance from the
centre of mass of the star.

We use this model to investigate offsets in DM over the en-
tire orbit of the binary system given orbital parameters determined
through timing and integrating numerically through the wind along
the line of sight to the pulsar.

We calculate DM offsets by looking at four consecutive or-
bits (MJD 52046 to 52971) that have data spanning multiple well-
separated frequencies and binning the TOAs into groups with mul-
tiple frequencies where possible, with lengths of five days or fewer.
We run TEMPO with DM arbitrarily fixed at 738.5 cm−3 pc, al-
lowing DM offsets to vary independently in each bin. The TEMPO
error bars are doubled, and, using the PyMC Markov Chain Monte
Carlo (MCMC) algorithm (Patil et al. 2010), we fit these offsets to
the wind-model predictions. The orbital inclination angle is varied
as a free parameter in order to find a best fit. From the inclina-
tion angle and the assumption of a 1.4 M" pulsar, the companion’s
mass is calculated using the binary mass function, and this in turn
is used to estimate the companion’s radius, R2. This is done by
interpolating over the relevant range of main-sequence masses in
Table 15.8 of Cox (2000). Along with the inclination angle, we
vary the quantity Ṁ/vratio in Equation 1 (equivalent to scaling
the height of the curve in Figure 1) and the baseline of the DM
offsets (shifting the vertical position of the curve). The results of
this fit are shown in Figure 1, with best fits of 53 ± 7 degrees,
9+2

−3×10−10 M" yr−1, and 0.41+0.15
−0.12 cm

−3 pc for the orbital incli-
nation, the quantity Ṁ/vratio, and the DM baseline offset, respec-
tively. Demorest et al. (2010) have measured a neutron star mass of
2 M", and so we also ran the MCMC code assuming a pulsar mass
of 2.0 M". All fit parameters were consistent within the error bars
of the results listed above, and so we continue to assume a pulsar
mass of 1.4 M".

It is apparent from Figure 1 that the model and observations
agree well. The fit has a reduced χ2 of 1.04. Using all three output
fit parameters, we numerically calculate a predicted DM offset for
each TOA. These offsets are applied to all TOAs in TEMPO to re-
move the effects of a varying DM from the timing residuals, even
for epochs with only single-frequency observations.

We can use the fit parameters to estimate some further quan-
tities. Using the inclination angle obtained through this fit, and
assuming a pulsar mass of 1.4 M", we estimate the mass of
the companion to be 20+6

−4 M". This is consistent with the early
main-sequence star hypothesis of Stairs et al. (2001), and with the
isochrones plotted in Figure 3 of Bassa et al. (2011) for a main-
sequence companion younger than 10 Myr, which fits with the pul-
sar’s characteristic age of 0.35 Myr.

Allowing a vratio value in the range 1–3, our measure-
ment of Ṁ/vratio gives a mass-loss rate in the range (0.6–
3)×10−9 M" yr−1 for the companion. While this is lower than

Figure 1. Predicted dispersion measure offsets fit to measured changes in
DM over four orbits of the J1740−3052 system, shown both as a function
of MJD and orbital phase. The orbital inclination determined by this fit is
53 ± 7 degrees. The offsets shown are in reference to an arbitrary ‘zero’
value of 738.5 cm−3 pc. The upper horizontal axis on the top plot denotes
January 1 each year and the dotted vertical lines show times at which peri-
astron occurs.

models predict for radiatively-driven winds by at least an order of
magnitude (e.g. Vink et al. 2000; Muijres et al. 2012), some Galac-
tic late O-type main-sequence stars have in recent years been ob-
served to have unexpectedly low mass-loss rates in just this range
(e.g. Motch et al. 2005; Marcolino et al. 2009). This is known as
the ‘weak-wind problem’. The cause of these weak winds is not es-
tablished, but models that initiate winds using line acceleration in
addition to radiative acceleration do appear to reproduce the weak-
wind problem for late O-type stars (Muijres et al. 2012). Whatever
the cause, it appears as though the companion to PSR J1740−3052
may experience this phenomenon.

The baseline offset is best interpreted in conjunction with the
DM measured by TEMPO, and so we withhold discussion of this
parameter until the next section.

Finally, we find evidence for orbital variations not only in DM,
but in the scattering timescale of pulses. In Figure 2 we plot scat-
tering timescales for 1190 MHz data as a function of orbital phase,
binned to increase signal-to-noise. It is clear that the amount of
scatter increases where the pulses must traverse more of the stellar
wind, which is the same phase at which the DM variations peak in
Figure 1.

2.5 Timing results

We run TEMPO using the pulsar-main-sequence binary model of
Wex (1998). The parameters fixed and fit in TEMPO are shown in
Table 2, and the residuals for observing frequencies greater than 1
GHz are plotted in Figure 3. While the fit includes ten spin period
derivatives (with higher-order derivatives fit as a means to reduce
low-frequency timing noise), only the first two are shown.

The lower-frequency data do not appear to follow the f−2

variation in arrival times between data at different frequencies as
the >1 GHz data do, and so our timing solution excludes these
data. Residuals that include these points are shown in Figure 4 to

Figure 4.8: Observed dispersion measure offsets and best-fit curve as computed by Madsen et.
al. over four orbits with a simple stellar wind model. The data come from different telescopes at
different frequencies.
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Figure 4.9: Same data as above but fitted with our simulation code using the same stellar wind
model.



Chapter 5

The eclipsing binary pulsar
PSR J1701-3006B

5.1 Overview

Discovered during the Parkes Globular Cluster Survey (PKSGC) in 2000 [1], it is a very
puzzling object. It has been found close to the center of mass of NGC 6266, a very massive
and bright (MV = −9.19) globular cluster, which is also the fifth-richest of MSPs. To date,
six1 millisecond pulsars were found in it.

Like all the other five sources spotted in the cluster, the object is a millisecond pulsar,
part of a short-period binary system with a very tight orbit (ap sin i ' 0.11 R�). Together
with PSR J1701-3006E, PSR J1701-3006B boasts a feature that makes it different from
the others: the presence of irregular radio eclipses.

Over a time span of about 10 years, timing observations (typically of 30-60 minutes each in
duration) performed at Parkes at the frequency of 1390 MHz, have led to the determination
of a timing solution, whose parameters are shown in Table 5.1. Unfortunately, like for all
the pulsars found in any globular cluster, the great distance (d ∼ 6.9 kpc [11]) makes it
an apparently faint source. We can see at a glance that the spin period derivative Ṗ is
negative, suggesting an acceleration al toward the observer, high enough to overcome the
positive intrinsic spin-down Ṗi. The Shklovskii effect2 and the Galactic potential cannot
alone account for it and the responsible must be the globular cluster potential well3. This,
together with its position, very close to the cluster center, are clear clues giving support
to the association of the pulsar with NGC 6266.
Additional analyses, both with timing and optical data, allowed to infer many dynamical
parameters of the cluster which, in turn, have put significant constraints both on the
age and on the surface magnetic field of the pulsar. In fact, to be consistent with the
cluster’s age, the characteristic age of PSR J1701-3006B must be greater than ∼ 1.3 Gyr.

1http://www.naic.edu/-pfreire/GCpsr.html
2The Shklovskii effect is a classical effect due to the pulsar transverse motion.
3Any acceleration of the pulsar along the line of sight contributes to an apparent period derivative of

Ṗ = alP/c.

70
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PSR J1701-3006B

Right Ascension (J2000), RA [hh:mm:ss.sss] 17:01:12.67092(22)
Declination (J2000), DEC [dd:mm:ss.sss] -30:06:49.027(18)

Spin period, P [ms] 3.59385221732417(26)

1st Period Derivative, Ṗ [10−19 s s−1] -3.496730(10)

2nd Period derivative, P̈ [10−31 s s−2] 3.8(10)
Dispersion Measure, DM [pc cm−3] 113.44(8)

Orbital Period, Pb [days] 0.1445454318(10)

1st Orbital Period Derivative, Ṗb [10−11 s s−1] -0.482(8)
Eccentricity, e 0a

ap sin i [ls] 0.252770(6)
Flux Density at 1400 MHz, S1400 [mJy] 0.3(1)

Derived Parameters

Characteristic Age, τc [Gyr] & 1.3
Mass Function, f(Mp) [M�] 0.000829944(4)
Spin-Down Power, Lp [erg/s] 3.7 · 1034

Surface Magnetic Field, BS [G] . 4.0 · 108

a given its very small value, we fixed the eccentricity to 0 in our calculations.

Table 5.1: Physical and orbital parameters obtained by timing observations for J1701-3006B.

Correspondingly, this sets an upper limit on the magnetic field, which must necessarily be
. 4.0 · 108 G, a very plausible value for any millisecond pulsar.

5.1.1 Phenomenology of the pulse variations along the orbit.

The object shows strong distortions on the pulsar signal and on the times of arrival of
the pulses at ∼ 1.4 GHz near superior conjunction. The beginning and end of the pulse
distortions usually occur at orbital phases 0.15-0.20 and ∼0.35, respectively, displaying
a slight asymmetry with respect to the canonical center of the eclipse (φ = 0.25) and
exhibiting excess propagation delays (Figure 5.2a). Thus, the phenomenon covers about
20% of the orbit, with random irregularities both in the length and in the appearance
(Figure 5.1). Hereafter, for simplicity, we will refer to all these effects (distortions and
delays in the pulsed signal) with the word “eclipse” of the signal, even though in the vast
majority of the orbit no real disappearances of the signal are occurring (see later).

As for other such objects, the excess time delays are thought to be due to the presence
of outflowing gas off the companion: the increased column density would change the DM
and thus the propagation speed of the signal.

Even if very useful, a frequency-dependent analysis of the behavior of the delays of the
observation, by splitting the 256-MHz band, has not been possible so far because of the
faintness of the signal. The low S/N could also be due to the smearing of the pulses;
considering the observed delays of ∆ta . 2 ms at 1.4 GHz, the corresponding ∆DM can
be responsible for a broadening of about 80% of the intrinsic pulse width over the receiver
bandwidth. This also indicates us that the pulsed signal cannot disappear, after summing
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the frequency channels, only because of this effect; as a confirmation of that, the pulses
are usually visible all over the orbit.

The display of the eclipses itself let us guess that the inclination i cannot be small. Some
simple considerations [1] related to the measured mass function, orbital inclination and
the eclipsing gas region, lead to the conclusion that the radius RE of this latter must be
larger than that of the Roche lobe, RL (RE & 0.8 R�, whereas RL = 0.26− 0.34 R�), no
matter what mechanism one is considering. This implies that the gas must continuously
be replenished by the companion itself, an unambiguous evidence in support of the fact
that the companion is undergoing mass loss.

Alternatively, free-free absorption of the radio waves in
an ionized envelope of matter released from the companion
and expanding adiabatically can explain both the weaken-
ing and the total disappearance of the radio signal. The opti-
cal depth for this process can be written (see Spitzer 1978;
Rasio, Shapiro, & Teukolsky 1989) as

!ff ¼ 0:74
a

1:32 R"

! "
0:8 R"

RE

! "2 104 K

T

! "3=2

Dt2#3 ; ð3Þ

where the orbital separation a and the radius of the eclipse
RE , defined to be the chord at radius a subtended by the
angle between the orbital phase of eclipse ingress and orbital
phase 0.25, are scaled for PSR J1701#3006B (assuming an

orbital inclination of 60&; see below), T is the temperature of
the fully ionized gas, and Dt#3 is the observed delay in milli-
seconds at the border of the event. Relatively small delays
(Dt#3d0:4) imply only a small reduction in the observed
flux density [!ff Dt#3ð Þd0:1], whereas Dt#3e1 would be
accompanied by significant or complete absorption of the
signal. Interferometric observations of the unpulsed
continuum and observations at other wavelengths will help
to clarify the nature of the eclipses.

The occurrence of eclipses suggests that the orbital incli-
nation i is not small. For i ¼ 60&, the median of all possible
inclination angles, and an assumed pulsar mass of 1.40M",
Mc;60 ¼ 0:14 M". For ie30&, the companion mass spans
the interval 0:12 0:26 M", corresponding to a Roche lobe

Fig. 4.—Observed signal intensity as a function of orbital phase and pulsar phase for five observations of PSR J1701#3006B centered at 1390 MHz with a
bandwidth of 256 MHz. Eclipses are expected to occur around the superior conjunction (phase 0.25). The data are processed in contiguous integrations of
120 s duration. (a) A '68 minute observation starting on 2002 November 27 at 05:41 UT. (b) A '210 minute observation starting on 2003 January 26 at
00:01 UT. (c) A'69 minute observation starting on 2000 July 21 at 07:54 UT. (d ) A'68 minute observation starting on 2002 July 10 at 07:12 UT. (e) A'131
minute observation starting on 2002 April 29 at 13:52UT.

No. 1, 2003 BINARY MILLISECOND PULSARS IN NGC 6266 481

Figure 5.1: Pulse intensity as a function of both the orbital and the pulse phase for five different
observations made at a central frequency of 1390 MHz. Evidently, pulse delays occur around
superior conjunction φ = 0.25. Note that the signal is almost always visible, suggesting that both
absorption and smearing processes are normally not really significant.
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radius in the range RL ¼ 0:26 0:34 R". Hence, independent
of the eclipse mechanism, the extension of the eclipsing
cloud, e0.8 R", is larger than RL, and the cloud must be
continuously refilled with matter released from the com-
panion. The plasma density in the eclipse region is
!E # 1:6$ 10%17Dt%3 g cm%3, and assuming isotropic emis-
sion, mass continuity implies that the donor star loses gas at
a rate _MMc ¼ 4"R2

E!Evf # 1:0$ 10%12Dt%3vf ;8 M" yr%1;
where vf ;8 is the wind velocity at RE in units of 108 cm s%1

(the order of magnitude of the escape velocity from the
surface of the companion).

If the companion is a helium white dwarf (whose maxi-
mum radius is Rwd ¼ 0:04 R" for masses greater than 0.12
M" and Td104 K; Driebe et al. 1998), and assuming iso-
tropic emission of the pulsar flux, a significant fraction
f ¼ 0:04 0:2ð Þ $

!
3:7$ 1034 ergs s%1= _EE

"
of the energy

deposited onto the companion surface is necessary for
releasing the observed _MMc (where _EE is the spin-down power
of the pulsar and 3:7$ 1034 ergs s%1 its upper limit derived
using the arguments of x 3). However, the energy require-
ments are more easily satisfied for a nondegenerate, bloated
companion (as appears to be the case in most eclipsing
binary pulsars; Applegate & Shaham 1994). For example,
f ¼ 0:0004% 0:002ð Þ $

!
3:7$ 1034 ergs s%1= _EE

"
for a donor

with the radius of a main-sequence star of the same mass,
that is, 3–10 times larger than that of a white dwarf. Mass
loss from the donor star can be sustained by ablation of its
loosely bound surface layers by the relativistic wind emitted
by the pulsar. This model has been successfully applied to
explain the radio eclipses in close orbital systems having
very light companions, e.g., PSRs B1957+20 (Fruchter
et al. 1990) and J2051%0827 (Stappers et al. 2001). As with
these other systems, the apparent mass-loss rate from the

companion to PSR J1701%3006B is very small; the ablation
timescale #abl ¼ $Mc;60= _MMc ¼ $140 Gyr, where $ is the ion-
ized fraction, is longer than the upper limit on the pulsar age
(i.e., the cluster age), unless $ < 0:09.

Following an alternate interpretation, the PSR
J1701%3006B system may resemble that of PSR
J1740%5340, where the effects of the pulsar irradiation are
negligible in triggering the eclipsing wind from the secon-
dary star (D’Amico et al. 2001c), and the eclipses (or the
excess propagation delays, sometimes seen far from the
nominal phases of eclipse) are caused by matter overflowing
the Roche lobe of the donor star because of the nuclear
evolution of the companion (Ferraro et al. 2001). In that
system, accretion of matter onto the neutron star is
inhibited by the sweeping effect of the pulsar energetic wind,
according to the so-called radio-ejection mechanism
(Burderi, D’Antona, & Burgay 2002). We note that
J1701%3006B shares with PSR J1740%5340 (1) a compan-
ion significantly more massive than those of PSRs
B1957+20 and J2051%0827, (2) the occurrence of excess
propagation delays at 1.4 GHz that are much larger (up to
#1 ms vs. a few tens of ls) than those observed in any of the
systems having very low mass companions,15 and (3) the
presence of irregularities in the eclipses.

A new class of eclipsing recycled pulsars having relatively
massive companions (Mc;60 ¼ 0:10 0:22 M") is emerging
from the GC searches. Besides PSR J1701%3006B in
NGC 6266 and PSR J1740%5340 in NGC 6397, there are
PSR B1744%24A in Terzan 5 (Lyne et al. 1990), PSR
J0024%7204W in 47 Tuc (Camilo et al. 2000), and
PSR J2140%2310A in M30 (Ransom et al. 2003), whereas
no similar system has been detected in the Galactic field to
date. A simple explanation for the overabundance of evapo-
rating ‘‘ black widow ’’ pulsars in GCs with respect to the
Galactic disk has been recently proposed by King, Davies,
& Beer (2003): namely, the current companion of most of
the eclipsing pulsars in globulars would be the swelled
descendent of a turnoff star, which replaced the original
white dwarf companion of the pulsar in an exchange inter-
action in the cluster core. This scenario posits that the
radio-ejection mechanism (Burderi et al. 2001) is now oper-
ating in all the eclipsingMSPs and provides an evolutionary
basis for separating the systems with very lowmass compan-
ions from those having more massive donor stars; in the for-
mer, the mass loss would be driven by angular momentum
loss through gravitational radiation, whereas in the latter
the mass-loss rate would be determined by the nuclear
evolution of the companion.

The relatively massive systems in GCs are good candidates
for the optical detection of the donor star16 and follow-up
observations. Unlike the Galactic eclipsing systems, their
age, metallicity, extinction, distance, and hence intrinsic
luminosity and radius can be estimated from the parent clus-
ter parameters (see, e.g., Edmonds et al. 2001a, 2002; Ferraro
et al. 2001). In the case of J1740%5340 in NGC 6397, the
companion is a red variable star of magnitude V # 16:5
(Ferraro et al. 2001), and stringent constraints have been set

15 A possible exception is the pulsar C in the GC M5 (S. M. Ransom
2003, private communication).

16 In fact, the optical identification of the secondary star has been
recently reported for two noneclipsing MSPs having companions with
Mc;60 # 0:2 M": PSR J0024%7204T in 47 Tuc (Edmonds et al. 2003) and
PSR 1911%5958A inNGC 6752 (Ferraro et al. 2003; Bassa et al. 2003).

Fig. 5.—Excess group delays of the signal of PSR J1701%3006B,
measured on 2003 January 26 (UT time refers to orbital phase 0.25). The
observation was centered at 1390MHz, with a bandwidth of 256MHz, and
the data are processed in contiguous 360 s integrations. The error bars are
twice the formal uncertainty in the pulse arrival times. The average value of
the S/N within the eclipse region is 4:6( 0:6, whereas it is 5:7( 0:5 (1 %
uncertainty) outside.
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(a) Grouped excess time delays around superior
conjunction relative to an observation made at
1390 MHz on January 26, 2003. The error bars
are twice the nominal uncertainties on the pulse
arrival times [1].

– 12 –

Fig. 3.— Hα light curve of COM6266B obtained by using the period and the reference

epoch of the radio ephemeris of PSR6266B. Asterisks represent ACS archive observations

performed in August 2004; large empty triangles are the WFPC2 data collected in May 2007.

The phases of quadrature and conjunction of COM6266B are reported for clarity. The solid

line represents the Fourier time series (trucated to the second harmonic) that best fits the

data.

(b) H-α magnitude versus orbital phase. The
shape of the light curve is that typical of a de-
formed star, whose apparent size results larger at
the two quadratures, φ = 0.0 and φ = 0.5 [17].

Figure 5.2

5.1.2 Optical studies: the puzzle about the Roche lobe overflow.

Observations in different parts of the electromagnetic spectrum have also been made. In-
deed, nearly coincidently to the nominal position of the source, both an optical and an
X-ray counterpart were found [17]. The former has then been confirmed to be associated
with the low-mass companion, whereas the latter might be a consequence of the interac-
tion between the pulsar wind and the evaporating gas from the companion itself. Data
from the Hubble Space Telescope has allowed to plot the color-magnitude diagrams for
all the stars of the cluster which were in the field of view of the instrument. The optical
counterpart to PSR J1701-3006B has been found to have an anomalous red color, which
implies that it must be out of the main sequence phase; in particular, the companion is
located in the region of the color-magnitude diagram between the white dwarf sequence
and the main sequence. A significant mass loss during the evolution of the system may be
the origin of this peculiar location.
In addition to this, an H-α excess results, suggesting the presence of ionized gas through-
out the system. The relative light curve (Figure 5.2b) displays two maxima at the two
quadratures (φ = 0 and φ = 0.5) that is typical of tidally deformed stars.
All of these observed features point toward a tight binary system in which a non-degenerate
low-mass companion is bloated by tidal forces due the neutron star, prompting a heavy
mass loss.

Using the observed parameters of the cluster along with the color-magnitude diagram, one
gets an effective temperature for the companion of Teff ∼ 6000 K, a bolometric luminosity
of Lbol ∼ 1.9 L� and a radius of Rc ∼ 1.2 R�. Under the picture described above, one
should also expect the radius to be very close to Roche lobe size. However, using the
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timing results, an assumed mass of the neutron star of Mp = 1.4 M� and an inclination4

of i & 20◦, the inferred ranges both for the companion mass and for its Roche lobe radius
turn out to be Mc = 0.125 ÷ 0.41 M� and RL = 0.26 ÷ 0.40 R�, respectively. Hence,
independently of the right value of the system inclination, the optically derived stellar
radius results by far larger than the expected Roche lobe radius of about a factor of 3.
The only way to match the Roche lobe radius with the observed companion radius would
be supposing i ∼ 3◦, but this possibility must be excluded both for the presence of eclipses
and for the improbable implied companion mass of ∼ 6 M�.

The characteristics outlined so far induce us to regard PSR J1701-3006B as part of the
Redbacks sub-class of eclipsing binary pulsars.

5.2 Data reduction and analysis

What we would like to do now is to investigate the system, with a special regard to the
eclipses. To achieve that, we will basically compare observational data with theoretical
plots obtained from the code we developed and make some considerations starting from
our results. The aim is to put some constraints or to derive some meaningful hypotheses
on the nature of both the plasma cloud and the companion. For example we would like
to understand how the former might look like in its shape and density. This investigation
is very important in order to plan and later analyze the data of additional observations
which will be available with current and future instruments. Thanks to this well tailored
observations strong constraints on the physical parameters and processes occurring in the
system may be inspected.

5.2.1 Observational data

The observations we used were made with the 20-cm multibeam receiver of the Parkes
radio telescope with the aid of the high-resolution filter-bank, consisting of 512 channels,
each 0.5-MHz wide, for a total band pass of 256 MHz centered at the frequency of 1390
MHz. The filterbank was used to minimize pulse smearings due to dispersion [1].

The data has been acquired over a time span of about 11 years (4030 days). Thanks to our
very good knowledge of the spin period and the column electron density (i.e. the DM) due
to the ISM along the line of sight, we scrunched the observations in frequency5 to increase
the S/N, and found the best timing solution for our data set, based only on the off-eclipse
TOAs. Then we exploited it to re-extract the residuals over all orbital phases. The
result is shown in Figure 5.3. Given the extremely small eccentricity (actually negligible)
which resulted from the timing solution, we decided to set it to zero in the process of re-
extraction. In this way we were allowed to use perfectly circular orbits in our simulations.
We can note that the pulsed signals (and, consequently, the TOA residuals) are present
throughout the orbit and no significant decrease in the number of the TOAs can be
appreciate around orbital phase φ = 0.25 (see e.g. Figure 3.6). That means that we

4This is a conservative assumption, given that the presence of radio eclipses suggests that the inclination
should not be small.

5That is, summing the different channels to obtain a unique time series.
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cannot consider this effect as a “true” eclipses, in the sense that we do not witness a
complete signal disappearance.

Re-binnig

Sometimes it is convenient to work with less but more meaningful data. As a matter of
fact, when studying the residuals, we often have hundreds or thousands of values and we
can assume them to follow gaussian statistics. Having a look at Figure 5.3 we can note
that the points are heavily scattered all over the orbit. The cause of such an irregular
behavior is to be ascribed to the fact that the TOAs are relative to a lot of different
orbits occurred in different periods of time. Besides existing possible differences from one
single orbit to another, we also recall the fact that our data span 11 years and in such
a long time it is quite unlikely that the plasma cloud did not undergo any detectable
change. Rather, its parameters have probably varied, thus causing the scatter of points
we observe, especially when the signal is more deeply affected by the presence of ionized
gas. An averaging process can give a reasonable way to overcome this issue.

Since, in the case of PSR J1701-3006B, we started with a very large number (4416) of
TOAs, we decided to bin them in uniform orbital intervals. In this way we got a data set
with a better statistics to work with. Obviously, the drawback is that the parameters we
are going to get by fitting the binned data, will only be estimates of their “mean values”.
However, given the very poor knowledge of the properties of both the companion and the
eclipsing cloud, we can be fairly happy and settle for them.
It is worth remarking the importance of choosing a proper number of bins, as a result of a
trade-off between resolution in orbital phase and “smoothness” of the resulting data. For
example, using a small width for the intervals, we have less points falling in each one and
the consequence will be a highly jagged histogram; we will thus have no hope to reproduce
the exact trend with our fairly simple model and, on the other hand, the plot itself is not
probably a faithful representation of the “true” average nature of the residuals. We must
therefore use wider bins, obtaining less resolution but more smoothness.

Formally, we assign to each bin a value that is an arithmetic mean of all the points falling
in it:

ȳ =
1

N

N∑

k=1

yi (5.1)

The use of simple arithmetic mean is justified by the above arguments, according to
which we could not regard the data that fell in each bin as different measures of the
same observable, given the irregular behavior and the dynamic nature of the gas cloud.
The corresponding uncertainty of the bin value is the so-called standard error of the
mean:

σȳ =
s√
N

=

√
1

N−1

∑N
i=1(yi − ȳ)2

√
N

. (5.2)

Here s is the standard deviation (i.e. the root mean square deviation from the mean), N
is the number of residuals which fall in the bin and yi are their values. Also, we associate
a particular orbital phase with each bin that is, again, the arithmetic mean of the orbital
phases of all the points that fell in that bin. It will also be used by our code to calculate the
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theoretical values only at those orbital phase where an experimental measure is present,
in order to save precious computational time.
After some trials, we opted to group the data in 50 intervals, therefore each representing
7.2◦ in orbital phase.
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Figure 5.3: Experimental TOA residuals for PSR J1701-3006B as acquired over a time span of 11
years. The increases due to the plasma cloud are evident. The observations were made at 1390
MHz, with a bandwidth of 256 MHz, 512 channels, each of 0.5 MHz.
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Figure 5.4: The same residuals as above but averaged in 50, equally wide, bins. The associated
errors have been calculated with the simple standard error formula.
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5.2.2 Preliminary considerations

Before running the numerical code, we can make some simple analyses based on the
resulting plot of the TOA residuals versus the orbital phase, which can give us some insights
into the physics of this object. This will also be helpful for understanding if the code results
are compatible with our intuition and preliminary estimates. For example:

• From the fractional orbital phase interval ∆φ defined by where excess time delays
start and end, we can have an idea of the ionized cloud size by simple geometrical
reasons. By making the simplifying assumption of a spherical cloud centered on the
companion, the radius of the eclipsing region can be expressed as:

RE = a sin

(
∆φ · 2π

2

)
(5.3)

In the case of PSR J1701-3006B we expect the cloud to have a cross section of the
order of ∼ 1 R�.

• From the magnitude of the residuals during the eclipse phases, once the size of the
cloud is approximately known, we can get a direct estimate of the order of magnitude
of the density of the ionized component, well inside the cloud. We can recall eq.
(3.11) and make the approximation ∆DM ∼ RE · 〈ne〉. Here the 〈. . .〉 indicates the
mean value and RE is the length scale for the size of the cloud. Solving for 〈ne〉, we
get:

〈ne〉 ∼ ∆ta ·
2πmec

e2
· f2
obs ·

1

RE
(5.4)

From the graph, we can find a maximum observed ∆ta ' 1.3 ms at φ ' 0.25 which,
combined with the other quantities (fobs = 1.4 GHz, RE ∼ 1 R�), gives us an
estimate for the electron number density of 〈ne〉 ∼ 107 cm−3.

• If we see the residuals of the pulses over the whole orbit, we are sure that no signif-
icant absorption processes are occurring. Conversely, if we do not see any residuals
in a certain interval of the orbital phases, we do not know a priori whether this hap-
pens because of absorption or just because of the smearing of the pulsed component
of the signal6 For PSR J1701-3006B, we can have an idea at this regard by looking
at how many residuals fall in each bin over the binary orbit. Since we have a large
number of data, we can safely assume to have the orbit uniformly sampled, so that
a lower number of points in a particular bin has necessarily to be ascribed to some
particular cause like, indeed, absorption. Having a look at Figure 5.5a we can notice
that there is no evidence of substantial decreases in the number of residuals at any
of the orbital phases.

These considerations give us important constraints with which we have to confront.

6Remember that the TOA residuals are extracted starting from integrated pulse profiles, obtained by
folding different time series of difference frequency channels (Section 2.1.1). If the DM changes in an
unpredictable way along the orbit, one cannot de-disperse the signal properly, resulting in a widening (i.e.
the so-called smearing) of the pulses, which may even lead to their complete disappearance.
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Pulse widths

Our suspicions about a possible smearing due to the extra DM, is supported by the analysis
of the pulse widths against the excess time delays. In figure 5.5b we can see a fairly
good linear correlation (see Section 3.6.2) between the two quantities: when the pulse is
delayed by the dispersing medium the pulse itself is consequently broadened. The graph
was obtained by dividing the orbit in one hundred bins and summing all the pulse profiles
relative to each single bin. In this way the S/N was high enough to get a reliable pulse
width. In the plot are shown only the data relative to the phase interval 0.13 - 0.37.
This embraces the whole duration of eclipses at 1.4 GHz as well as including some off-
eclipse data (i.e. not influenced by any excess DM) that evidently cluster in the lower-left
corner.
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(b) Possible correlation between pulse delays and
DM smearing, a clear evidence of the presence of
an extra contribution to the DM due to the cloud
(Corongiu et al, in preparation).

Figure 5.5

5.3 Least-squares fit strategy

In this section we illustrate the way we led our least-squares analysis.

Generally speaking, the exact processes involved in the emission of the gas off the compan-
ion are still poorly known. This is also true for this system which, as we have explained,
presents apparently mysterious properties when seen at optical wavelengths. For this rea-
son we decided to explore all the possible models which our code was endowed with.

At the lowest order of approximation, we started from the fact that the observed optical
light curve does not show evidence of any asymmetry between the illuminated side and
the dark side of the star. Hence, we first tested the simplest model of a perfectly spherical
outflow with a density profile which naturally follows from the hypothesis of a constant
mass loss: if we suppose the companion mass to be ejected at a rate of Ṁc = 4πr2ρ(r)vesc,
where vesc is the escape velocity from the system, by a simple balance equation we obtain
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a power-law density profile with an index β that must be 2:

4πr2ρ(r)vesc = 4πR2
Eρ(RE)vesc ⇒ ne(r) = ne(RE)

(
RE
r

)2

(5.5)

For this simulation, we fixed the power-law index and made the other physical parameters
vary. This model is by far the simplest we could choose, but nothing seems to rule it
out a priori. Since the real situation is very likely not that simple, with many factors
highly influencing the dynamics of the gas outflow, we later relaxed the hypothesis of a
fixed index and regarded it as a free parameter as well, always under the assumption of a
spherical power-law density profile (eq. 4.1). On the other hand, the X-ray counterpart
that has been found [17] showed a spectrum that is harder than the typical MSP population
observed in globular clusters. This feature is typical of non-thermal processes and the most
likely origin is indeed the pulsar/stellar wind interaction, which in turn implies a possible
shocked gas cloud. The shape and density profile of the latter can anyway vary a lot,
depending on various factors among which we certainly have the relative wind strength
and the Coriolis forces induced by the orbital motion. Again, given our lack of knowledge
about such detailed properties, we tried all the three bow-shaped geometries for the cloud
that our code contemplated.

In performing our simulations, we gave the initial residual file to the code, which in turn
binned it as explained above. We carried out a separate least-square fit for each model, in
search for the combination of physical and geometrical parameters that best reproduced
the observed delays, i.e. that minimized the reduced χ2. We decided to calculate this
latter only considering those bins which are evidently influenced by the eclipse processes,
namely the bins around superior conjunction where excess time delays are evident. This
choice was made because we are primarily interested in the eclipse mechanism and we
didn’t want any “contamination” from data which is very likely not involved in that.
In each case we set the possible ranges and the step of the free parameters values to span
and proceeded iteratively, thickening the sampling around the best-fit values from the
previous fit. The theoretical values of the pulse delays were obtained by calculating the
extra DM due to the modeled gas cloud at each orbital phase, at the observing frequency
of 1390 MHz.

Once we obtained the best-fit parameters, we accounted for the fact that the pulses are
often detected throughout the eclipse, i.e. there seems not to be any significant absorption.
We then explored the two main candidate absorption processes (free-free and Raman
scattering). We recall that the opacity of the plasma for such mechanisms depends, apart
from the frequency, on the ionized component density and temperature. Since the density
profile has been univocally determined by the best-fit on the residuals, we looked for those
temperatures profile which could allow us not to lose the signal completely over the whole
orbit in the two most common astrophysical regimes, namely adiabatic (γ = 5/3) and
isothermal (γ = 1) flows. Formally, we searched for those temperature profiles which
made the optical depth always less than the arbitrary value of 3. It is important to note
the different dependance of the optical depth for the two absorption mechanisms on the
temperature T : while free-free absorption is less effective when T increases (eq. 3.8),
the opposite is true for the Raman scattering (eq. 3.9). In this way, by assuming the
occurrence of both processes in the gas cloud, we could derive the interval of temperatures
for the gas at which the signal can actually pass through the eclipsing cloud without
notable losses of intensity. The simulation results are shown in Tables 5.2-5.4.
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Table 5.2: Best-fit parameters in the case of a spherical gas cloud. i: inclination, Mc: companion’s mass. RE : radius of cloud, ne(RE): electron
density at the eclipse radius, β: power-law density profile index, χ̃2: reduced chi square, γ: polytropic index. T (RE): temperature at the eclipse
radius. The actual free parameters were: i, RE , ne(RE),β, T (RE).

Geometry Density i Mc RE ne(RE) β χ̃2 Absorption γ T (RE)
profile [◦] [M�] [R�] [cm−3] effect [K]

Sphere (S1) eq. (4.1) 68.8 0.13 0.70 107.60 2† 3.60

Free-Free 1 & 104.5

Raman 1 . 107.5

Free-Free 5/3 & 104.5

Raman 5/3 . 107.0

Sphere (S2) eq. (4.1) 57.3 0.15 0.95 106.65 13 1.10

Free-Free 1 & 105.0

Raman 1 . 107.0

Free-Free 5/3 & 104.0

Raman 5/3 . 106.0

† In this simulation the parameter was kept fixed, thereby it does not result from the fit.
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Table 5.3: Best-fit parameters in the case of an ellipsoidal gas cloud. i, Mc, χ̃
2, γ have the same meaning as in Table 5.2.

nmax
e , θT , β, Tmax: see Section 4.3.2 and eq. (4.2-4.3).

Geometry Density i Mc nmaxe Semi-major axes Tilt angle, θT β χ̃2 Absorption γ Tmax

profile [◦] [M�] [cm−3] [R�] × [R�] [◦] effect [K]

Ellipsoid (E1) eq. (4.2) 68.8 0.13 108.80 2.10 × 3.15 5.0 14 2.91

Free-Free 1 & 105.0

Raman 1 . 107.0

Free-Free 5/3 & 105.5

Raman 5/3 . 106.5

Ellipsoid (E2) eq. (4.3) 74.5 0.13 108.90 2.10 × 3.15 5.5 8 3.03

Free-Free 1 & 105.5

Raman 1 . 106.5

Free-Free 5/3 & 106.0

Raman 5/3 . 106.5
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Table 5.4: Best-fit parameters in the case of a paraboloidal gas cloud. i, Mc, χ̃

2, γ have the same meaning as in Table 5.2.
nmax
e , θT , A, β, Tmax: see Section 4.3.2 and eq. (4.4-4.5).

Geometry Density i Mc nmaxe Length of tail Tilt angle, θT A β χ̃2 Absorption γ Tmax

profile [◦] [M�] [cm−3] [R�] [◦] effect [K]

Paraboloid (P1) eq. (4.4) 83.0 0.13 108.55 3.0 1.0 1.6 4.0 6.60

Free-Free 1 & 104.5

Raman 1 . 107.5

Free-Free 5/3 & 105.0

Raman 5/3 . 108.0

Paraboloid (P2) eq. (4.5) 74.5 0.13 108.90 4.0 6.0 2.2 1.2 11.16

Free-Free 1 & 104.5

Raman 1 . 107.5

Free-Free 5/3 & 105.5

Raman 5/3 . 108.5

Table 5.5: Best-fit parameters in the case of a paraboloidal comet-like gas cloud. i, Mc, χ̃
2, γ have the same meaning as in Table 5.2.

nmax
e , C, A, β, Tmax: see Section 4.3.2 and eq. (4.6).

Geometry Density i Mc nmaxe Length of tail C A β χ̃2 Absorption γ Tmax

profile [◦] [M�] [cm−3] [R�] effect [K]

Cometary tail (C1) eq. (4.6) 77.3 0.13 108.70 5 0.09 0.8 5.5 2.27

Free-Free 1 & 105.0

Free-Free 5/3 & 105.5

Raman 1 . 107.0

Raman 5/3 . 107.5
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5.4 Discussion

If we look at the simulation results, we can immediately notice how sensitive are some
common parameters to the modeled geometry and density profile.

However, we can also recognize the accordance of some of the parameters with their
expected values deduced from our preliminary considerations. First of all we expected
an average electron density of about ∼ 107 cm−3. In all the cases we found values for
ne that are comparable with that estimate. We must not be deceived by the apparent
higher figures that are reported in the ellipsoidal, paraboloidal and cometary-like cases:
remembering their assumed density profiles, those are the very maximum values that are
assumed to be at the pulsar-sided vertex of the cloud, implying lower densities in the inner
regions so that the averaged values are indeed comparable with the guessed ones.

The retrieved inclinations are between ∼ 57◦ and ∼ 83◦ with a higher incidence of in-
termediate values. As a matter of fact, the upper-limit value has much less significance
than the others, being proper of the second least probable model, featuring a χ̃2 = 6.60.
The consequent companion mass has been calculated from the mass function assuming a
pulsar mass of 1.4 M�. In the whole range of inclinations it does not show any significant
deviations from Mc ' 0.13M�, confirming the hypothesis of a low-mass companion.

Regarding the absorption processes, the tests we performed showed that, in all the cases,
the kinetic temperature at the edge of the cloud must be above 104 ÷ 106 K, depending
on the model, to avoid the signal disappearance due to free-free. Such temperatures are
not so unlikely for the gas spilling off an ablated star. By considering the escape velocity
vesc from the system and the fact the star is losing mass, it is quite probable that very
high temperatures are attained so that the mean square velocity due to thermal motion is
comparable to vesc, thus justifying a mass loss from the companion. On the other hand,
the possible Raman scattering poses a upper limit for the same temperatures which are
most often very difficult to reach.

5.4.1 Best-fit analysis

Let us finally compare the single models to one another. Interestingly, the one that results
to be the less adequate in reproducing the data, is the paraboloidal geometry. Of the two
assumed density profiles for the paraboloidal shape, the smaller reduced χ2 is about twice
the worst value that can be found in all the other cases.
On the contrary, we find the best accordance with the simplest geometry we proposed.
While the inclination, the size of the eclipsing cloud and the electron density at its edge
are absolutely consistent with all our previous analyses, some questions could be raised
about the very high value of the power-law index. The reasons for that are a lot: the
value of 13 is by far much higher than any physically consistent conceivable mechanism to
make the density vary so rapidly. More importantly, extrapolating the temperature of the
gas at the Roche lobe radius (' 0.28 R�) in the case of adiabatic flow, one gets a value
of T > 1010 K, which is obviously absurd. We could consider an isothermal rather than
adiabatic flow for the gas, thus avoiding this inconvenient issue. Still, we should justify
a uniform temperature by appealing to some efficient mechanism which would constantly
redistribute the heat across the cloud.
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In the light of our discussion, we can consider of true significance, from a statistical view-
point, only the simulation S2, corresponding to the spherical geometry. Despite the very
high power-law index (which calls for a physical acceptable explanation that, at present,
we are not able to give) and the impossibility of accounting for the slight asymmetry in
the TOA residuals, it is formally the only case in which the reduced χ2 approaches the
value of 1. It is thus possible to exploit this fact to retrieve some statistically interesting
information, like the confidence intervals. We used the χ2 grid that our code produced to
search for the 3σ uncertainties associated with the best-fit parameters. To achieve that,
we moved in the neighborhood of the best-fit value of a single parameter keeping fixed all
the others, looking for the higher and lower values which caused the non-reduced χ2 to
increase by a quantity ∆χ2 = 9.21. These values set the 99%-confidence level uncertainty.
We repeated this procedure for each parameter of the fit and the result is shown in Table
5.6. Again, the extremely small intervals are a clear evidence of how the accordance with
data is sensitive to small variations of the model.

i [◦] ne(RE) [cm−3] RE [R�] β χ̃2

57.3+0.6
−0.6 106.65+0.04

−0.06 0.95+0.01
−0.01 13.0+0.5

−0.7 1.10

Table 5.6: Best-fit parameters and associated 3σ uncertainties in the case of a spherical gas cloud.
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Figure 5.6: Theoretical curve (solid line) of the predicted excess time delays as a function of the
orbital phase with the best-fit parameters relative to a spherical gas cloud. The filled circles are the
highlighted points of the curve which have to be compared with the experimental binned residuals.



CHAPTER 5. THE ECLIPSING BINARY PULSAR PSR J1701-3006B 85

5.5 Future observations

From all that we said in the previous sections, it is easy to realize the importance of
constraining the physically meaningful ranges of the involved variables. The primary way
to achieve that is by using and combining data from different parts of the spectrum. In
the specific case of PSR J1701-3006B, of particular usefulness to shed some light on its
riddles, would be:

• A phase-resolved optical spectroscopic analysis: from the optical spectral lines we
could measure the companion’s radial velocity vradc . In the case of circular orbits,
the mass function of the companion can be expressed in term of this latter quantity
and of the (easily measured) orbital period:

f(Mc)
.
=

M3
p

(Mp +Mc)2
=

Pb
2πG

(vradc )3 (5.6)

Hence, we would just have to combine the mass function of the pulsar with that of
the companion in order to calculate the mass ratio of the system:

Mp

Mc
=

[
f(Mc)

f(Mp)

]1/3

(5.7)

Given the small range of the possible masses for the neutron star, the inclination of
the binary system would thus be constrained.
Moreover, if led with high-resolution instruments, optical spectroscopy might reveal
the single absorption lines and the surface gravity (GMc/Rc

2) and hence the radius
of the companion. In addition, we could also investigate the nature of the star from
a chemical point of view, thus giving us other relevant clues about the dynamics of
the eclipsing gas.

• New radio observations at lower frequencies: currently, we have wealth of data
at 1390 MHz. This is good for timing purposes but not very much for studying
the eclipse mechanism. At different frequencies we would probably witness visible
changes, with respect to what we saw so far, around superior conjunction. At longer
wavelengths the absorption processes become more efficient and we could see an ac-
tual disappearance of the signal. If not absorbed, we would then see higher excess
time delays. At any rate, studying the behavior of the pulses at more than one
frequency (even better would be performing multi-frequency observations simulta-
neously) can help us a lot to discriminate among possible mechanisms.

• Interferometric observations of the continuum radio signal component: especially in
the case of true eclipses, which occasionally occur also in our data, the study of
the non-pulsed flux could ultimately confirm our suspicion about the origin of the
pulse disappearance related to the smearing. If the smearing is the cause of the
phenomenon we should not see any change in the continuum flux of the source along
the orbit. This kind of studies are more easily performed using an interferometer
rather than a single dish.



Chapter 6

The eclipsing binary pulsar
PSR J1023+0038

6.1 Overview

The second target of our study is a very peculiar one, since no other similar sources have
been discovered so far. PSR J1023+0038, as explained below, could in fact represent the
link between low-mass X-ray binaries (LMXBs) and radio millisecond pulsars (MSPs). It
was suggested that the intermediate stage between a LMXB and a MSP is represented by
a Soft X-ray Transient (SXRT) [44]. Such an object has a very erratic behavior, since it
is quiescent and undetectable for most of the time but sometimes undergoes outbursts,
usually lasting for days or months, during which its X-ray flux is very high. During the
outburst phase the system is supposed to undergo accretion of matter onto the compact
star which prevent the radio signal from being observed. On the contrary, during the
quiescent phase the conditions can be suitable for the infalling material to be kept outside
the light cylinder by the pressure of the neutron star’s magnetic field, allowing the pulsar
radio emission to be activated. In the light of these features, this class of objects is the most
promising in giving us the ultimate validation of the of the recycling model of a neutron
star in a LMXB system up to the formation of a radio millisecond pulsar. Unfortunately,
until a few years ago, none of the observed SXRTs had ever been showed both signs of
accretion and and pulsed radio emission.

What makes the J1023+0038 system unique is that the aforementioned bimodal behavior
has been likely detected in it. In fact it first displayed in the early 2000s clear signs
of accretion which, a few years later, completely disappeared. More specifically, optical
studies [48, 24] showed typical behaviors of an accretion flow, such as rapid flickering in
magnitude and prominent emission lines in its blue spectrum. As of 2002 such features
have not been observed anymore. Rather, J1023+0038 was discovered as a millisecond
pulsar in 2007 by means of the Green Bank Telescope (GBT) during a 350-MHz pulsar
survey.

Timing analysis of the successive data acquired at GBT, Arecibo and Parkes, allowed
the determination of the binary parameters with a very high degree of accuracy. The
so obtained parameters are shown in Table 6.1. It is worth underlining the very low

86
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PSR J1023+0038

Right Ascension (J2000), RA [hh:mm:ss.sss] 10:23:47.687(3)
Declination (J2000), DEC [dd:mm:ss.sss] 00:38:41.15(7)

Spin period, P [ms] 1.6879874440059(4)

1st Period Derivative, Ṗ [10−19 s s−1] 1.2(8) ·10−20

Dispersion Measure, DM [pc cm−3] 14.325(10)
Orbital Period, Pb [days] 0.1980962019(6)

1st Orbital Period Derivative, Ṗb [10−10 s s−1] 2.5(4)

2nd Orbital Period Derivative, P̈b [10−11 s s−2] -5.21(14)
Eccentricity, e 0a

ap sin i [ls] 0.3433494(3)
Flux density at 1600 MHz, S1600 [mJy] ∼ 14 mJy

Spectral Index ∼ -2.8
Companion’s spectral type G

Derived Parameters

Mass Function, f(Mp) [M�] 0.001107
Spin-Down Power, Lp [erg/s] < 3 · 1035

Surface Magnetic Field, BS [G] < 3 · 108

aagain, the very small value allowed us to fixed the eccentricity to 0 in our calculations.

Table 6.1: Physical and orbital parameters obtained by timing observations for J1023+0038 [3].

eccentricity which suggests that the binary underwent classical tidal effects. Also the
fairly high value (∼ 3 ·10−10) of the orbital period derivative Ṗb is probably to be ascribed
to classical tidal torquing from the gas motion in the extended envelope of the companion
star. This is not strange in the picture of a very tight system, like J1023+0038 is.

To summarize, the PSR J1023+0038 system represents the very first case in which both
radio emission and accretion have been observed to occur at different times and this makes
the binary particularly worthy of close investigation.

6.1.1 Eclipses

The evidence of accretion over the first years after the discovery indicates that the compan-
ion probably fills its Roche lobe [3]. This hypothesis is strongly supported by the observed
regular eclipses in the radio band. The eclipse duration, as recorded at the Westerbork
Syntesis Radio Telescope (WSRT) largely depends on the frequency, ranging from very
brief at 3000 MHz to most of the orbit at 150 MHz. This is clearly visible in Figure 6.1.
Variations in DM are also measured on short time scales of the order of minutes.

Optical spectroscopy [50] let astronomers measure the radial velocity of the companion.
This allowed to estimate the system mass ratio which turned out to be Mp/Mc = 7.1±0.1.
For a pulsar mass of 1.0 ÷ 3.0 M�, the inclination of the system was constrained to the
range 53◦ ÷ 34◦. These values for the inclination implies that the line of sight will never
cross the Roche lobe of the companion at any orbital phase. Hence, the eclipsing gas must
be present also quite far from the orbital plane. For a Roche-lobe-filling star, one can think
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Figure 1 Frequency dependence of eclipses, DM variations, and pulse profiles. (A–F) show
flux density as a function of pulse phase and orbital phase at 3000, 2000, 1600, 700, 350, and
156 MHz, respectively. (G) shows DM, as estimated from the 1600 MHz observations (see
SOM for details). Orbital phase is defined to be zero at the pulsar’s ascending node, so that the
companion passes closest to our line of sight at orbital phase 0.25. To the right of (A) through
(F) are pulse profiles at the respective bands; the instrumental smearing time is indicated with a
horizontal bar in each panel. The exception is that the profile (C) is instead based on a 1410 MHz
observation with higher time resolution. Note that the eclipse is nearly absent at 3000 MHz, but
is longer at 700 MHz than at 1600 MHz. At low frequencies, random short eclipses, indicated
by (iv) and (v), are also visible. Pulse phase is as predicted by a phase-coherent timing solution,
so that large short-term timing variations are visible as vertical motions of the pulse peak. Note
in particular the pulse arrival time variations at eclipse ingress (i) and egress (ii); the variation
at egress appears to be due to the substantial DM variation (iii) visible in (G).

7

Figure 6.1: Frequency dependance of eclipses, DM variations and pulse profiles.

that the mass is lost both from inner Lagrangian point and across its whole equipotential
surface, through a wind, thus allowing the gas to diffuse also far from the plane.
Recent radio astrometric observations using very long baseline interferometry (VLBI) led
to the measurement of the parallax of the system, from which a very precise value for
its distance was obtained, namely d = 1368+42

−39 pc [2]. Combining this information with
the mass ratio, the mass of the pulsar is constrained within the interval Mp = 1.71 ±
0.16 M� directly shrinking the possible values for the inclination to the small range of
44◦ ÷ 40◦.

6.1.2 Nature and origin of the system

From the distinctive traits we have depicted so far, J1023+0038 can be classified as a
Redback (Section 3.2.2). In this respect we could be tempted to regard it as similar to
other objects, such as 47 Tuc W and PSR J1740-5340, fully recycled MSPs which show
large although irregular eclipses and companions of masses in the range of 0.1 ÷ 0.3M�.
The aforementioned objects are found in globular clusters and they probably coupled with
their current companions in dynamical events after being spun up by a different partner.
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Someone could think of a globular cluster origin for J1023+0038 too, but its great distance
from even the nearest cluster actually makes unlikely the hypothesis that it was ejected
from a globular cluster. Given its location in the field of the Galaxy (the short distance of
∼ 1.3 kpc also allows the pulsar to be a bright source) it is very likely that the recycling
phase involved its current companion, a star that has not yet been turned into a white
dwarf by the process. These considerations represent the possible explanation for the
connection between LMXBs and MSPs. J1023+0038 might in fact be in a bistable state
[3]: according to how much the Roche lobe is filled, the source might appear as either an
X-ray binary or a radio pulsar and we cannot exclude the possibility for the system to
undergo a new episode of disk formation in the future.

6.2 Data reduction and analysis

6.2.1 Observational data

For J1023+0038 we started from two datasets coming from two different telescopes, namely
the Lovell Telescope at Jodrell Bank, UK, and the Westerbork Synthesis Radio Telescope,
Netherlands. The central observing frequencies were 1395.5 MHz and 350 MHz, respec-
tively.
The data we had was relative to a single observation session that was made simultane-
ously at the two telescopes on March 13, 2009. Unfortunately, even if the two observations
started at the very same instant, the Westerbork data covered two orbital periods, whereas
those of Jodrell actually covered only one (Figures 6.2 and 6.3). The Westerbork original
data consisted of 600 1-min long sub-integrations (for a total 10-h observation), over a
bandwidth of 70 MHz split into 7 frequency channels, each 10-MHz wide. The Jodrell
data was instead made up of 1841 sub-integrations, each of 10 seconds in duration (for a
total 5.11-h observation) over a 73-MHz bandwidth divided into 220 sub-channels. At first
glance we can immediately notice two features: at lower frequencies, the eclipses are longer
and the S/N is higher, as expected according to Section 1.2.4. Once the data have been
reduced1 we extracted the timing solution with the software TEMPO2 from the off-eclipse
only orbital phase data. From it, we obtained new ephemeris and installed it on the very
same data. We then did the timing once again and extracted the final TOA residuals as a
function of all the orbital phases at both frequencies. The trustworthiness of the residuals
around the eclipse is very important for our analysis and hence we first summed all the
frequency channels of both the datasets. Moreover, since the pulsar still resulted rather
faint at 1395.5 MHz, we were compelled to sum also the relative time series in groups of
30, obtaining new sub-integrations ∼ 5-min long. In this way we obviously had less orbital
resolution at that frequency. Conversely, at 350 MHz the signal resulted strong and we
did not need to scrunch adjacent time series; from that, we were able to extract a reliable
TOA from each 1-min sub-integration. The extracted residuals as a function of the orbital
phase are shown in Figure 6.4 and Figure 6.5.

Despite the overall shortage of points, the multi-frequency nature of the dataset is crucial
for present and future investigations. However, for the above reasons, a meaningful multi-
frequency analysis is only applicable to the first orbit.

1We removed those frequency channels in the data which were evidently affected by interferences.
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Figure 6.2: Pulse intensity against sub-integrations and pulse phase of PSR J1023+0038 at 350
MHz with a bandwidth of 70 MHz, as acquired by the Westerbork Synthesis Radio Telescope in
a 10-h observation (600 × 1-min sub-integrations) which covered about two orbits. The brightest
yellowish regions represent the pulsed radio signal. The eclipses are clearly visible as vertical gaps
between these regions and cover more than half an orbital period.

Figure 6.3: Pulse intensity against sub-integrations and pulse phase of PSR J1023+0038 at central
frequency of 1395.5 MHz with a bandwidth of 73 MHz, as acquired by the Jodrell Bank Lovell
Radio Telescope in a ∼ 5.1-h observation. Given the faintness of the signal at this frequency, we
scrunched the sub-integrations in groups of 30, in order to increase the S/N. As expected, the
eclipse duration is shorter than at 350 MHz. The gap that is visible soon after the third hour of
observation corresponds to a few minutes in which the telescope had to stop tracking the source.
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Figure 6.4: TOA residuals for PSR J1023+0038 at 350 MHz. The pulses are visible in the phase
interval φ = 0.56÷ 0.95. This means that the pulsed signal at 350 MHz is eclipsed for about 60%
of the orbit. Its sudden disappearance suggests strong absorption as the radio wave crosses the
edge of the gas cloud.
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Figure 6.5: Same as above but at 1395.5 MHz. At this frequency the pulsed signal is lost at
phases φ = 0.10÷ 0.39, that is for 29% of the orbit. Note the evident asymmetry between ingress
and egress that mimics that seen in PSR 1957+20, suggesting a corresponding asymmetry in the
eclipsing plasma cloud.
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Figure 6.6: Signal-to-Noise ratio (S/N) of the pulse profiles as a function of the orbital phase. Since
our data was not calibrated, we could not retrieve the absolute values of the mean flux density,
Smean. However, we are only interested in its relative trend. Because of the linear proportionality
Smean ∝ S/N [35] we used the S/N of the folded profiles as a measure of the relative fluxes over
the whole orbit.

6.2.2 Preliminary considerations

Similarly to the case of PSR J1701-3006B, we can extract some information directly from
the data. As we are going to see, the most interesting characteristics are proper of the
higher-frequency dataset.

• The first evidence that is worth discussing is the asymmetry in the observed TOA
residuals around the eclipse at∼ 1.4 GHz. The signal disappears at phase φ ' 0.10 to
then emerge again at φ ' 0.39. The eclipse is thus almost perfectly centered around
superior conjunction. However, the excess time delays behave quite differently at
ingress and egress: while they increase in an orbital phase interval of about ∆φ '
0.04 before vanishing, they decrease from their reappearance in approximately ∆φ '
0.11, as well as exhibiting much higher values. The first argument seems to indicate
that the obscuring material might have an approximately symmetrical shape: we
can think of a spherical cloud as a lowest-order degree of modeling. On the other
hand, the residuals themselves suggest an asymmetry in the gas density between
the leading and trailing component of the cloud, with respect to the orbital motion
direction.

• Again, by using eq. (5.4) and the observed residuals at ingress ad egress at 1.4
GHz, we can give an estimate for the average densities of the gas at the edges of
the cloud, soon before and after the disappearance of the signal. Given the range of
possible orbital separations and assuming the eclipsing gas to be spherical in shape,
we exploit eq. (5.3) to get the rough size of the cloud of RE ∼ 1.3 R�. Choosing the
extreme measured TOA residual values (i.e. ∆tmax

ingr ∼ 0.032 ms and ∆tmax
egr ∼ 0.291
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ms at ingress and egress, respectively) the average electron densities turn out to be:

〈ne〉ing ∼ 5 · 105 cm−3

〈ne〉egr ∼ 5 · 106 cm−3

• Another apparently odd feature that can be seen in the Jodrell data is the distinct
discrepancy in the registered flux of the signal before and after the eclipse. Even
after our data reduction (i.e. summing adjacent sub-integrations in groups of 30),
for approximately half of the orbit the pulses are barely visible. As a measure of
the relative flux density as a function of the orbital phase, we extracted the S/N of
the single folded profiles of our dataset; the resulting light curve is shown in Figure
6.6. Evidently, soon after the eclipse the signal results significantly brighter (see also
Figure 6.3). Such a behavior can have different origins as well as being the result of
a superposition of various effects.
As a basic way to probe the possible underlying mechanism, we studied the pulse
profiles in the low- and high-flux parts of the orbit. If their shape had resulted
visibly different, we could have suspected of some smearing effect. However, as can
be seen in Figure 6.7, this was not the case: despite the obvious increased noise in
the low-flux profile2, both its shape and the width of the two sub-pulses show little
or no changes with respect to the high-flux profile. This fact induces us to invoke
absorption effects as the most probable physical processes which could account for
the observed phenomenon.
Another consideration that can be made is that, in order to have a complete smearing
of the 1.69-ms pulsed signal at 1.4 GHz over the 73-MHz bandwidth, we should
have an increase in the DM of as much as ∆DM ' 7.5 pc cm−3; we should thus
explain a sudden variation from ∆DM ' 7.5 pc cm−3 to a value that is ∼ 50 times
lower, namely ∆DM ' 0.14 pc cm−3, that is the deduced excess DM from the first
visible residual after the eclipse at that frequency (∆ta = ∆tmax

egr ' 0.291). At
the eclipse ingress and egress the excess DM deduced from the observed maximum
delays ∆tmax

ingr ' 0.032 ms and ∆tmax
egr ' 0.291 are ∆DM ' 0.02 pc cm−3 and ∆DM '

0.14 pc cm−3, respectively. Hence, in order to explain the disappearance of the signal
because of the smearing, one should invoke a very steep change of the DM at the
edges of the eclipse . Such an enormous variation does not seem to follow the visible
trend of the observed residual the eclipse egress. Therefore, this represents another
clue in support of a true absorption process as responsible for the observed signal.

• The different eclipse duration at the two frequencies rules out the possibility of a
plasma frequency cut-off as the mechanism provoking the eclipses. In fact, we recall
the fact that such a process cannot depend on the radiation wavelength (eq. 3.10).

2the normalized average S/N in this low-flux profile is about seven times lower than in the bright part
of the orbit
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(a) (b)

Figure 6.7: Pulse profiles for PSR J1023+0038 at 1.4 GHz relative to the “high-flux” (a) and
“low-flux” (b) part of the orbit. Despite the much lower S/N, the latter does not seem to show any
evident change in its shape and width, suggesting an absorption nature for the lower flux density.

6.3 Least-squares fit strategy

In the case of this source our analysis had to be necessarily different from that we did
for PSR J1701-3006B. This is basically due to the larger number of observational con-
straints we had. In fact, every model that aims at reproducing the properties of PSR
J1023+0038 coming out from our datasets, must account for the three main visible be-
haviors, namely:

• The excess time delays before and after the eclipse at 1.4 GHz.

• The different eclipse durations at the two frequencies.

• The peculiar light curve at 1.4 GHz.

Our ultimate goal would obviously be finding a perfect combination of the cloud geomet-
rical and physical parameters that nicely fits the three features at the same time. As a
first step in our investigation, we started trying to fit the three features separately. By
studying the distinctive traits that emerge from the simulation results, we can lay the
foundations for future works, hopefully arriving to a physically consistent final solution
accounting for all the observed characteristics.

We recall here the small interval into which the inclination of the system was constrained
thanks to interferometric parallax measures, namely i ∼ 40 ÷ 44◦ . After some trials, we
saw that the differences in the fit results obtained by varying the inclination i in that
range were absolutely negligible. Hence, we decided not to leave the inclination as a free
parameter and fix it to its mean value of i = 42◦.

Since, from the previous analysis, we ruled out the hypothesis of a significant smearing
in DM or a plasma frequency cut-off as responsible for the eclipses, we focused on the
two absorption mechanisms that we have presented in the previous sections: free-free
absorption and Raman scattering. For both, we considered the case of an isothermal
(γ = 1) as well as an adiabatic (γ = 5/3) outflow for the streaming gas.
Moreover, our preliminary tests showed that all the geometries, with the exception of the



CHAPTER 6. THE ECLIPSING BINARY PULSAR PSR J1023+0038 95

spherical one, did not allow to obtain meaningful results. As we will see, this fact is also
related to the strict constraints which the fixed inclination sets. Consequently, in our final
analysis, we explored only the spherical model.

6.3.1 Excess time delays

In trying to model the observed TOA residuals at the frequency of 1395.5 MHz, we fol-
lowed an analogue procedure with respect to that we did for PSR J1701-3006B. The main
differences from that case stem from the much smaller sample of data and the sudden
disappearance of the signal.

The shortage of data has its first evident consequence in the fact that, this time, we could
not bin the residuals in orbital intervals, which would have been good both for describing
an average behavior of the system and for assigning more adequate error bars to the points
we tried to fit. In particular, the uncertainties we had were those associated with the single
residuals and which resulted from the previous timing analysis; clearly, they have nothing
to do with the uncertainties associated with the differences from one eclipse occurrence
to another, which are typically much larger. Given the smallness of the errors we had no
reasonable hope, with our simple model, to obtain an acceptable fit to the data. For this
reason we regarded the reduced χ̃2 just as a quality factor for comparing various models
produced varying the parameters.

Just as in the case of the previous pulsar, we calculated the χ̃2 only from those points who
showed evident delays between φ = 0.10 and φ = 0.39. However, the orbital phases of the
disappearance of the pulsed signal are not of secondary importance with respect to the
excess time delays trends and, in searching for the best solution, we could not neglect them.
For this reason, not only did our code compute the theoretical delays due to the extra
DM, but also the optical depth Γ, at each orbital phase, due to the particular absorption
process we were considering. Technically, every time the optical depth overcame the
arbitrary threshold Γ = 3, the code conventionally assigned the value -1 to the theoretical
TOA residual. Correspondingly, we added fictitious “observed” delays with the value -1
in the data file in the phase interval where the signal was not present. As it’s easy to
understand, the fictitious points give a null contribution to the chi-square only when the
absorption mechanism makes the signal effectively disappear in the observed orbital phase
range. Thanks to this computational “trick” we were able to include the absorption as a
feature to take into account in searching for the best-fit solution.

The best-fit parameter values for all the explored possibilities are listed in Table 6.2.
In Figure 6.8 we show the best theoretical curve, namely the one relative to a Raman
scattering, with γ = 1.

We can already note that the reduced chi squares for the examined model are all quite
similar, indicating that we cannot easily disentangle the absorption processes.
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Geometry Absorption Process ne(RE) RE β T (RE) χ̃2

[cm−3] [R�] [K]

Sphere

Free-Free, γ = 1 106.0 2.1 11 104.0 244.92
Free-Free, γ = 5/3 106.6 1.9 10 103.5 246.28
Raman, γ = 1 106.4 2.1 7 108.0 239.84
Raman, γ = 5/3 106.8 1.9 7 107.5 245.77

Table 6.2: Best-fit parameters for the excess time delays at the eclipse ingress and egress at 1.4
GHz.
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Figure 6.8: Best-fit excess time delays over the observed values, corresponding to a Raman scat-
tering process with in an isothermal (γ = 1) spherical gas cloud with parameters: ne(RE) =
106.4cm−3, RE = 2.1 R�, β= 7, T (RE) = 108.0 K. The two vertical lines define the theoretical
orbital interval in which the signal would completely be absorbed and hence we would not see any
residual.

6.3.2 Eclipse duration at different frequencies

For the eclipse durations we exploited the simultaneous data we had at 350 MHz and 1.4
GHz. As also indicated in Figure 6.4 and 6.5, the eclipse manifested at orbital phases φ
in the following ranges:

φ ∈ [0.10, 0.39] at 1395.5 MHz

φ ∈ [0, 0.56] ∧ [0.95, 1] at 350 MHz

We thus looked for the combination of geometrical and physical parameters which, simul-
taneously at the two frequencies, best reproduced the orbital phase intervals in which the
signal was not visible. Again, we set the absorption threshold at Γ = 3, exactly as we did
for the TOA residuals.
Because we needed to quantify how well a parameter set was able to fit the observed eclipse
intervals, we operated as follows: we prepared two fictitious data files which represented
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the flux density as a function of the orbital phase at the two frequencies. Both the files
contained a conventional flux density of 1 at all the arbitrary chosen 100 equally spaced
orbital phases, with the exception of the eclipse interval φ ∈ [0.10, 0.39] for the 1.4 GHz
file and for φ ∈ [0, 0.56] ∧ [0.95, 1] for the 350 MHz file, where it took a null value. We
then ran the code making it calculate the light curves at the two frequencies, imposing
a theoretical maximum flux density of 1 and a null spectral index. The reason why we
worked in this apparently weird fashion is this time strictly tied to the quantity we used to
quantify the goodness of the fit: since we had no experimental errors (given the fictitious
nature of our “experimental” data) we defined our quality factor Q as the simple inverse
of the sum of the squared residuals for both the frequencies:

Q .
=

[ ∑

350 MHz

(Yi − yi)2 +
∑

1.4 GHz

(Yi − yi)2

]−1

(6.1)

where Yi are the theoretical flux densities calculated by the code and yi are the fictitious
experimental values. The reason why we chose an identical maximum flux density for
the two frequencies (setting the spectral index to zero) with a value of 1 is related to the
definition we gave for Q: in this way the two frequencies had exactly the same weight in
the evaluation of the overall goodness of the fit.

Table 6.3 shows the best-fit parameters for the different cases.

Geometry Absorption Process ne(RE) RE β T (RE) Q
[cm−3] [R�] [K]

Sphere

Free-Free, γ = 1 105.3 1.8 9 102.0 16.96
Free-Free, γ = 5/3 106.8 1.8 7 104.0 15.37
Raman, γ = 1 106.5 1.8 9 108.0 15.03
Raman, γ = 5/3 106.5 1.8 7 108.0 15.16

Table 6.3: Best-fit parameters for the observed eclipse duration as a function of the frequency.

Even in the case of the eclipse duration, the values of the quality factors are very close
to each other, presenting the same difficulties in discerning the favorite mechanism as we
experienced in the previous case.
Another interesting fact that emerges is the very low values of the temperature in the case
of free-free absorption in case of an adiabatic but, even more, in the case of an isothermal
flow. For the latter we register a theoretical temperature of only 100 K, definitely too low
a value to make the gas completely ionized, as we supposed a priori. Moreover, in the
isothermal case, it is physically very unlikely to have such a low temperature throughout
the cloud. In this case we should not even be allowed to consider the free-free interaction
as we did. If free-free were indeed the true responsible for the eclipse mechanism, one
should at least suppose that the gas is only partially ionized in the eclipse edge regions.
Similar, but less stringent argument can be applied to the case of γ = 5/3, for which a
temperature of 10000 K should not anyway be able to fully ionize an hydrogen gas cloud.
This consideration holds true even more for heavier elements like helium.
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6.3.3 Radio light curve

The last information we could exploit to get some insight into the physics of the gas
cloud, was the observed pulsed flux density as a function of the orbital phase at 1.4 GHz.
As already stated, we could not retrieve the exact values of the measured flux densities
because our data were not calibrated. However, that was a not a big issue, since we were
not interested in the absolute values but rather in their trend over the whole orbit. We
thus took advantage of the linear proportionality between the mean flux density and the
S/N of a folded profile [35]. We extracted the S/N values from all the sub-integrations of
the only complete orbit present in the 1.4-GHz dataset, and plotted them as a function of
the orbital phase. The data file was given to the code, which in turn searched for a best-fit
solution by calculating the theoretical light curves at the varying parameter values. In
order to compare the experimental and the calculated light curves in a meaningful way,
we considered the maximum observed S/N value in our data, and used it to normalize the
theoretical values.
Again, given the lack of relative uncertainties in the data, we used the same variable
Q defined in eq. (6.1) as a measure of the goodness of the fit. The resulting best-fit
parameters for the light curve are shown in Table 6.4. The best-fit curve, relative to a
free-free absorption mechanism in the case of an adiabatic flow, is also shown in Figure
6.9.
Very similar considerations concerning the temperature values can be made with respect
to the results of the case of eclipse duration. The same is valid for the quality factors,
which are very close to one another and do not let us discriminate among the four physical
configurations.
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Figure 6.9: Best-fit S/N as function of the orbital phase, corresponding to the case of a Free-Free
absorption process with an adiabatic (γ = 5/3) spherical gas cloud with parameters: ne(RE) =
106.8cm−, RE = 2.3 R�, β= 2, T (RE) = 103.5 K.
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Geometry Absorption Process ne(RE) RE β T (RE) Q
[cm−3] [R�] [K]

Sphere

Free-Free, γ = 1 105.9 2.4 3 102.5 3.84 · 10−3

Free-Free, γ = 5/3 106.8 2.3 2 103.5 4.07 · 10−3

Raman, γ = 1 107.0 2.5 8 107.0 2.89 · 10−3

Raman, γ = 5/3 106.8 2.5 6 107.0 3.06 · 10−3

Table 6.4: Best-fit parameters for the S/N as a function of the orbital phase.

6.4 Discussion

The first thing that can be noticed at a glance is that, in all the cases, the radius of the
eclipsing cloud results larger than the orbital separation (a ' 1.7 R�). This obviously
translates into the fact that the gas is modeled as completely engulfing the neutron star,
The reason for this result has to be sought in the fairly small value of the inclination
that we set. At i = 42◦, it is inevitable for the eclipsing region to extend far beyond
the neighborhoods of the companion to let the system display eclipses. For a spherical
geometry centered on the companion this implies a large radius which makes the cloud
surround the compact object in order to account for the observations.
The first consequence of this fact is that we have non-negligible contributions from the
ionized cloud to the observed properties that the code calculates at all the orbital phases.
On the other hand, for some parts of the data, we can distinctly see that the effects of
the cloud are barely, if not at all, visible. For instance, there is a large fraction of the
orbit, at both the observing frequencies, in which the TOA residuals are visible and do
not show any excess time delays at the off-eclipse phases, suggesting very little influence
by the outflowing matter. The fitting procedure evidently compensate for this “flaw” with
a high index of the power-law density profile, which always turns out to be higher than
6 with the only exception of the values taken in the case of the light-curve fit under the
hypothesis of a free-free absorption process.
The electron density at the eclipse radius is very often found to be above 106 cm−3 and
never exceeds 107 cm−3, in agreement with our preliminary analysis derived for the TOA
residuals at the eclipse edges.
Much different is the behavior of the temperature at the same eclipse radius. We can notice
a striking division in its orders of magnitude between the case of free-free absorption and
Raman scattering. This is not surprising if one remembers the different dependance of the
optical depth on the temperature for the two processes.

6.5 Future observations

In the previous sections we have discussed the possible effects that could be invoked for
explaining the eclipses that our data exhibited. We also performed several calculations
with our code with different configurations, from whose preliminary results we resolved to
focus on the only promising geometry, namely the sphere. However, even this latter did
show distinct difficulties in reproducing the data.
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The odd behaviors spotted in the data, as well as the simulations themselves, indicate
that PSR J1023+0038 very likely features a complex dynamics governing the eclipsing
plasma cloud and which determines a probably very irregular shape and density profile
for this latter. The fact that this peculiar system recently left an accretion phase, is in
all probability linked to the anomalies that are visible in its light curve as well as in other
observables.

The lack of data also prevented us from trying to model the average properties and be-
haviors of the binary. Being restricted to one single orbit, we were obviously subject to
the normal fluctuations that one must expect from such an unstable source. A significant
example, in this regard, is the light-curve at 1.4 GHz: while our data exhibited large vari-
ations over the orbit, other observations made at similar frequencies, like the one visible
in Figure 6.1, do not seem to show such an erratic behavior.

In the light of this considerations, we strongly suggest for this system:

• An extensive monitoring at the radio wavelengths: the large variations that can be
seen even on short time scales can give important clues about the dynamics of both
the gas and the system as a whole.

• New simultaneous multifrequency radio observations: it is important to have new
simultaneous data from various telescopes or from a multi-wavelength receiver, since
they could allow us to spot new peculiar behaviors which displays at the different
frequencies at the very same time. This could in turn help us to put more stringent
constraints to the eclipse mechanisms, thanks to their distinctive dependance on the
frequency, making sure that the possible dissimilarities are not due to the potential
physical variations that the cloud can easily undergo over time.

• X-ray observations: this band of the electromagnetic spectrum could give us impor-
tant hints about the interaction between the pulsar radiation with its environment
and, in particular, with the outflowing matter; hence, it could also reveal crucial in-
formation about the dynamics of the gas cloud. The latter can also suggest precious
details which could be then implemented in our code, allowing new models to be
explored.



Concluding remarks

In the present thesis we have studied a specific class of binary millisecond pulsars which
have the peculiarity of showing periodical eclipses in their pulsed radio signals. This class
of objects deserve particular attention because they represent the primary candidates for
explaining the connection between low-mass X-ray binaries (LMXBs), visible in the X-
ray band of electromagnetic spectrum, and millisecond pulsars (MSPs), which are rather
observed in the radio band.
We first reviewed the main features of the two categories into which eclipsing binary
pulsars can be further divided, namely Black Widow Pulsars and Redbacks. Many new
systems belonging to the two aforementioned groups have been discovered in the last two
years, almost tripling the total known sample. The additional wealth of the available data
opened the possibility of addressing new relevant physical and astrophysical problems the
study of which was, until recently, hampered by the poor statistics of the detected sample
of objects. One of the longest-pending issue is the underlying mechanism which could
explain the observed eclipses and, related to that, the geometrical and thermodynamical
properties of the gaseous cloud responsible for them.
As part of a large observational and theoretical effort aimed at tackling these problems,
in this thesis we first developed a powerful and versatile code which, with the aid of a 3D
graphical output, allowed us to numerically simulate such processes in the most variegate
geometrical and physical configurations, as well as to compare them with observational
data. More specifically, the code contemplates four main mechanisms thanks to which the
pulsed signal can disappear: they are the plasma-frequency cut-off, the pulse smearing due
to a varying dispersion measure, the free-free absorption and the Raman scattering.

The code was tested on a system (PSR J1740-3052) which had been previously deeply
examined, and it reproduced the already known results with a high degree of accuracy.
This enabled us to apply it to two previously unexplored systems, with the goal of getting
new insights into their physics and of tracing the direction toward which their future
observations should point.

The first object that we investigated, PSR J1701-3006, is a binary millisecond pulsar
found to belong to the globular cluster NGC 6266. This system is interesting because it
does not actually show a complete signal disappearance, but only delays in the arrival
times of the pulsed signal. A preliminary analysis indicated the path we had to follow
in the application of the code; in particular, the never-disappearing signal, along with an
apparent linear correlation between pulse delays and pulse profile widths, pointed toward
a dispersion smearing mechanism as the primary actor, while absorption effects did not
seem to play any significant role. We then used our 1.4-GHz data and tried to model, with
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our code, the excess time delays as a function of the orbital phase through a least-squares
fit procedure; in doing this, we assumed different geometries and density profiles for the
ionized gas cloud. Despite its apparent simplicity, the spherical geometry (with a steep
power-law density profile) resulted the most adequate in representing the data. Once we
found the best-fit parameters for each configurations, we exploited the above discussed
observational evidence to put some constraints on the temperature of the gas cloud. For
the spherical case, we constrained the temperature at the edge of the eclipse (considering
both the Raman scattering and Free-Free absorption effectively acting) in the 105 ÷ 107

K range for an isothermal matter flow, and in the 104 ÷ 106 K range for an adiabatic
flow. We finally stressed the importance of optical observations for this system, and in
particular how crucial would be a phase-resolved spectroscopy, which would allow us to
heavily constrain the currently unknown system inclination.

The second object of our study was PSR J1023+0038, a system that shows all the fea-
tures we would expect from a typical Redback, including true eclipses in which the signal
completely disappears. Moreover, it is thought that PSR J1023+0038 could be in the very
intermediate stage between a LMXB and a MSP. For this binary we exploited the multi-
frequency nature of the data we had, as well as the knowledge of the inclination angle. We
used our code to try to fit for the eclipse duration at the two frequencies, for the observed
excess time delays and for the strange trend of the radio light-curve, all as a function of
the orbital phase. Despite our efforts, the system resulted very difficult to model with
the current version of our code. While the more complicated geometries directly failed
in reproducing the data, the spherical geometry returned more meaningful but often con-
flicting results. We adduced these difficulties to the complexity of the dynamical processes
which the outflowing matter from the companion is probably undergoing. For this source
we remarked the importance of future extensive (possibly multi-frequency) monitoring in
the radio band in order to have more data to work with. Also X-ray observations would
help us to get some insights into the interaction between the pulsar radiation and the
outflowing matter.

In conclusion, we have built a flexible and well-tested tool through which we will hope-
fully continue to investigate these interesting and puzzling objects. The addition of more
realistic geometries and gas density distributions to the simulated trends, as well as the
availability of further theoretical and observational data for constraining the parameters
of these systems, are the ingredients of the future planned work. In fact, a lot of efforts
are yet to be made. However, in the light of the very high rate at which these system are
now being discovered, we are confident that many of the mysteries in which these latter
are currently shrouded will be unraveled in the near future.



Appendix A

The Cavalieri-Simpson integration
method

As it was evident in our discussion so far, we often had to compute simple unidimensional
definite integrals numerically. The easiest way to do so is by using the Cavalieri-Simpson
method, also known as the parabola method. The idea is to sample the integration domain
into a finite number of intervals in which we replace the integrand function with a branch
of a parabola. Let us consider the definite integral:

I =

∫ b

a
f(x)dx (A.1)

We can substitute the integrand with a second-order rational polynomial function:

f(x) → y(x) = Ax2 +Bx+ C (A.2)

As well-known, this is the equation of a parabola with the symmetry axis parallel to the
y-axis. In order to determine the coefficients A,B,C for each sampling interval we just
need to know three points of the parabola.
We thus split the integration domain [a; b] in n sub-intervals each of size:

h =
b− a
n

(A.3)

Let us take the interval extremes of the first two sub-intervals and compute the corre-
sponding values of the original integrand, f(x):

x0 = a ⇒ y0 = f(x0)

x1 = x0 + h ⇒ y0 = f(x2)

x2 = x0 + 2h ⇒ y0 = f(x2)

(A.4)

Let us compute the integral of y(x) in such an interval:

J =

∫ x2

x0

(Ax2 +Bx+ C)dx =

[
Ax3

3
+
Bx2

2
+ Cx

]x2

x0

=

=
2A(x2 − x0)(x2

2 + x2x0 + x2
0) + 3B(x2 − x0)(x2 + x0) + 6C(x2 − x0)

6
=

=
h

3

[
2A(x2

2 + x2x0 + x2
0) + 3B(x2 + x0) + 6C

]

(A.5)
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where we have made simplifications and have used the fact that (x2 − x0) = 2h.

By imposing that the points (x0, y0), (x1, y1), (x2, y2) belong to the parabola and remem-
bering that x1 = (x0 + x2)/2 we get the following system of equations:

y0 = Ax2
0 +Bx0 + C

y1 =
A(x0 + x2)2

4
+
B(x0 + x2)

2
+ C

y2 = Ax2
2 +Bx2 + C

(A.6)

Multiplying the second equation by 4 and summing to the others, we find:

y0 + 4y1 + y2 = 2A(x2
2 + x2x0 + x2

0) + 3B(x2 + x0) + 6C (A.7)

That is exactly the last member of eq. (A.5), so that we can write:

J =
h

3
(y0 + 4y1 + y2) (A.8)

Since y(x) in the interval [x0, x2] approximates the “true” function f(x) by construction,
we conclude that: ∫ x2

x0

f(x)dx ' h

3
(y0 + 4y1 + y2) (A.9)

Reiterating the procedure for each of the following couples of intervals, we trivially get:

∫ x2

x0

f(x)dx ' h

3
(y0 + 4y1 + y2)

...∫ xn

xn−2

f(x)dx ' h

3
(yn−2 + 4yn−1 + yn)

(A.10)

Hence:
∫ a

b
f(x)dx =

∫ x2

x0

f(x)dx+

∫ x4

x2

f(x)dx+ . . .+

∫ xn

xn−2

f(x)dx

=

n/2∑

k=1

∫ x2k

x2k−2

f(x)dx ' h

3

n/2∑

k=1

(y2k−2 + 4y2k−1 + y2k)

(A.11)

Summarizing:
∫ b

a
f(x)dx ' h

3

n/2∑

k=1

(y2k−2 + 4y2k−1 + y2k) (A.12)

that is the formula we used to evaluate the optical depth in the program.
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