Go to the first, previous, next, last section, table of contents.
Some programs appear to produce inconsistent floating-point
results compiled by g77
versus by other compilers.
Often the reason for this behavior is the fact that floating-point
values are represented on almost all Fortran systems by
approximations, and these approximations are inexact
even for apparently simple values like 0.1, 0.2, 0.3, 0.4, 0.6,
0.7, 0.8, 0.9, 1.1, and so on.
Most Fortran systems, including all current ports of g77
,
use binary arithmetic to represent these approximations.
Therefore, the exact value of any floating-point approximation
as manipulated by g77
-compiled code is representable by
adding some combination of the values 1.0, 0.5, 0.25, 0.125, and
so on (just keep dividing by two) through the precision of the
fraction (typically around 23 bits for REAL(KIND=1)
, 52 for
REAL(KIND=2)
), then multiplying the sum by a integral
power of two (in Fortran, by `2**N') that typically is between
-127 and +128 for REAL(KIND=1)
and -1023 and +1024 for
REAL(KIND=2)
, then multiplying by -1 if the number
is negative.
So, a value like 0.2 is exactly represented in decimal--since it is a fraction, `2/10', with a denomenator that is compatible with the base of the number system (base 10). However, `2/10' cannot be represented by any finite number of sums of any of 1.0, 0.5, 0.25, and so on, so 0.2 cannot be exactly represented in binary notation.
(On the other hand, decimal notation can represent any binary number in a finite number of digits. Decimal notation cannot do so with ternary, or base-3, notation, which would represent floating-point numbers as sums of any of `1/1', `1/3', `1/9', and so on. After all, no finite number of decimal digits can exactly represent `1/3'. Fortunately, few systems use ternary notation.)
Moreover, differences in the way run-time I/O libraries convert between these approximations and the decimal representation often used by programmers and the programs they write can result in apparent differences between results that do not actually exist, or exist to such a small degree that they usually are not worth worrying about.
For example, consider the following program:
PRINT *, 0.2 END
When compiled by g77
, the above program might output
`0.20000003', while another compiler might produce a
executable that outputs `0.2'.
This particular difference is due to the fact that, currently,
conversion of floating-point values by the libg2c
library,
used by g77
, handles only double-precision values.
Since `0.2' in the program is a single-precision value, it is converted to double precision (still in binary notation) before being converted back to decimal. The conversion to binary appends _binary_ zero digits to the original value--which, again, is an inexact approximation of 0.2--resulting in an approximation that is much less exact than is connoted by the use of double precision.
(The appending of binary zero digits has essentially the same effect as taking a particular decimal approximation of `1/3', such as `0.3333333', and appending decimal zeros to it, producing `0.33333330000000000'. Treating the resulting decimal approximation as if it really had 18 or so digits of valid precision would make it seem a very poor approximation of `1/3'.)
As a result of converting the single-precision approximation to double precision by appending binary zeros, the conversion of the resulting double-precision value to decimal produces what looks like an incorrect result, when in fact the result is inexact, and is probably no less inaccurate or imprecise an approximation of 0.2 than is produced by other compilers that happen to output the converted value as "exactly" `0.2'. (Some compilers behave in a way that can make them appear to retain more accuracy across a conversion of a single-precision constant to double precision. See section Context-Sensitive Constants, to see why this practice is illusory and even dangerous.)
Note that a more exact approximation of the constant is computed when the program is changed to specify a double-precision constant:
PRINT *, 0.2D0 END
Future versions of g77
and/or libg2c
might convert
single-precision values directly to decimal,
instead of converting them to double precision first.
This would tend to result in output that is more consistent
with that produced by some other Fortran implementations.
Go to the first, previous, next, last section, table of contents.